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This introduction to linear algebraic equations requires only a college
algebra background. Vector and matrix notation is not used. The sub-
ject of linear algebra, using vectors, matrices and related tools, appears
later in the text; see Chapter 5.

The topics studied are linear equations, general solution, reduced eche-
lon system, basis, nullity, rank and nullspace. Introduced here are the
three possibilities, the frame sequence, which uses the three rules
swap, combination and multiply, and finally the method of elimi-
nation, in literature called Gauss-Jordan elimination or Gaussian
elimination

3.1 Linear Systems of Equations

Background from college algebra includes systems of linear algebraic
equations like

{
3x + 2y = 1,
x − y = 2.

(1)

A solution (x, y) of non-homogeneous system (1) is a pair of values that
simultaneously satisfy both equations. This example has unique solution
x = 1, y = −1.
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The homogeneous system corresponding to (1) is obtained by replacing
the right sides of the equations by zero:{

3x + 2y = 0,
x − y = 0.

(2)

System (2) has unique solution x = 0, y = 0.

College algebra courses have emphasis on unique solutions. In this chap-
ter we study in depth the cases for no solution and infinitely many
solutions. These two cases are illustrated by the examples

No Solution Infinitely Many Solutions{
x − y = 0,

0 = 1.
(3)

{
x − y = 0,

0 = 0.
(4)

Equations (3) cannot have a solution because of the signal equation
0 = 1, a false equation. Equations (4) have one solution (x, y) for each
point on the 45◦ line x− y = 0, therefore system (4) has infinitely many
solutions.

The Three Possibilities

Solutions of general linear systems with m equations in n unknowns may
be classified into exactly three possibilities:

1. No solution.
2. Infinitely many solutions.
3. A unique solution.

General Linear Systems

Given numbers a11, . . . , amn, b1, . . . , bm, a nonhomogeneous system
of m linear equations in n unknowns x1, x2, . . . , xn is the system

a11x1 + a12x2 + · · ·+ a1nxn = b1,
a21x1 + a22x2 + · · ·+ a2nxn = b2,

...
am1x1 + am2x2 + · · ·+ amnxn = bm.

(5)

Constants a11, . . . , amn are called the coefficients of system (5). Con-
stants b1, . . . , bm are collectively referenced as the right hand side,
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right side or RHS. The homogeneous system corresponding to sys-
tem (5) is obtained by replacing the right side by zero:

a11x1 + a12x2 + · · ·+ a1nxn = 0,
a21x1 + a22x2 + · · ·+ a2nxn = 0,

...
am1x1 + am2x2 + · · ·+ amnxn = 0.

(6)

An assignment of possible values x1, . . . , xn which simultaneously satisfy
all equations in (5) is called a solution of system (5). Solving system
(5) refers to the process of finding all possible solutions of (5). The
system (5) is called consistent if it has a solution and otherwise it is
called inconsistent.

The Toolkit of Three Rules

Two systems (5) are said to be equivalent provided they have exactly
the same solutions. For the purpose of solving systems, there is a toolkit
of three reversible operations on equations which can be applied to obtain
equivalent systems. These rules neither create nor destroy solutions of
the original system:

Table 1. The Three Rules

Swap Two equations can be interchanged without
changing the solution set.

Multiply An equation can be multiplied by m 6= 0
without changing the solution set.

Combination A multiple of one equation can be added to
a different equation without changing the
solution set.

The last two rules replace an existing equation by a new one. A swap re-
peated reverses the swap operation. A multiply is reversed by multipli-
cation by 1/m, whereas the combination rule is reversed by subtracting
the equation–multiple previously added. In short, the three operations
are reversible.

Theorem 1 (Equivalent Systems)
A second system of linear equations, obtained from the first system of linear
equations by a finite number of toolkit operations, has exactly the same
solutions as the first system.

Exposition. Writing a set of equations and its equivalent system under
toolkit rules demands that all equations be copied, not just the affected
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equation(s). Generally, each displayed system changes just one equa-
tion, the single exception being a swap of two equations. Within an
equation, variables appear left-to-right in variable list order. Equations
that contain no variables, typically 0 = 0, are displayed last.

Documenting the three rules. In blackboard and hand-written work,
the acronyms swap, mult and combo, replace the longer terms swap,
multiply and combination. They are placed next to the first changed
equation. In cases where precision is required, additional information is
supplied, namely the source and target equation numbers s, t and the
multiplier m 6= 0 or c. Details:

Table 2. Documenting toolkit operations with swap, mult, combo.

swap(s,t) Swap equations s and t.
mult(t,m) Multiply target equation t by multiplier m 6= 0.
combo(s,t,c) Multiply source equation s by multiplier c and add

to target equation t.

The acronyms in Table 2 match usage in the computer algebra system
maple, for package linalg and functions swaprow, mulrow and addrow.

Inverses of the Three Rules. Each toolkit operation swap, mult,

combo has an inverse, which is documented in the following table. The
facts can be used to back up several steps, unearthing a previous step to
which a sequence of toolkit operations were performed.

Table 3. Inverses of toolkit operations swap, mult, combo.

Operation Inverse

swap(s,t) swap(s,t)

mult(t,m) mult(t,1/m)

combo(s,t,c) combo(s,t,-c)

To illustrate, suppose swap(1,3), combo(1,2,-3), mult(2,4) are used
to obtain the current linear equations. Then the linear system three steps
back can be obtained from the current system by applying the inverse
steps in reverse order: mult(2,1/4), combo(1,2,3), swap(1,3).

Solving Equations with Geometry

In the plane (n = 2) and in 3-space (n = 3), equations (5) have a geo-
metric interpretation that can provide valuable intuition about possible
solutions. College algebra courses might have omitted the case of no
solutions or infinitely many solutions, discussing only the case of a single
unique solution. In contrast, all cases are considered here.
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Plane Geometry. A straight line may be represented as an equa-
tion Ax+By = C. Solving the system

a11x + a12y = b1
a21x + a22y = b2

(7)

is the geometrical equivalent of finding all possible (x, y)-intersections of
the lines represented in system (7). The distinct geometrical possibilities
appear in Figures 1–3.

x

y

Figure 1. Parallel lines, no solution.

−x+ y = 1,
−x+ y = 0.

x

y
Figure 2. Identical lines, infinitely
many solutions.

−x+ y = 1,
−2x+ 2y = 2.

y

x
P

Figure 3. Non-parallel distinct lines,
one solution at the unique intersection
point P .

−x+ y = 2,
x+ y = 0.

Space Geometry. A plane in xyz-space is given by an equation
Ax+ By + Cz = D. The vector A~ı+ B~+ C~k is normal to the plane.
An equivalent equation is A(x− x0) +B(y− y0) +C(z − z0) = 0, where
(x0, y0, z0) is a given point in the plane. Solving system

a11x + a12y + a13z = b1
a21x + a22y + a23z = b2
a31x + a32y + a33z = b3

(8)

is the geometric equivalent of finding all possible (x, y, z)-intersections
of the planes represented by system (8). Illustrated in Figures 11–10 are
some interesting geometrical possibilities.

I

II

III

Figure 4. Triple–decker. Planes I, II, III
are parallel. There is no intersection point.

I : z = 2, II : z = 1, III : z = 0.
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I = II

III

Figure 5. Double–decker. Planes I, II
are equal and parallel to plane III. There is
no intersection point.

I : 2z = 2, II : z = 1, III : z = 0.

I

II

III Figure 6. Book shelf. Two planes I, II
are distinct and parallel. There is no
intersection point.

I : z = 2, II : z = 1, III : y = 0.

III

III

Figure 7. Pup tent. Two non-parallel
planes I, II meet in a line which never meets
plane III. There are no intersection points.

I : y+z = 0, II : y−z = 0, III : z = −1.

I = II = III Figure 8. Single–decker. Planes I, II, III
are equal. There are infinitely many
intersection points.

I : z = 1, II : 2z = 2, III : 3z = 3.

III

I = II

L

Figure 9. Open book. Equal planes I, II
meet another plane III in a line L. There are
infinitely many intersection points.

I : y + z = 0, II : 2y + 2z = 0, III : z = 0.

L

III

II
I

Figure 10. Saw tooth. Two non-parallel
planes I, II meet in a line L which lies in a
third plane III. There are infinitely many
intersection points.

I : −y+z = 0, II : y+z = 0, III : z = 0.
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P

III
I

II

L

Figure 11. Knife cuts an open book.
Two non-parallel planes I, II meet in a line L
not parallel to plane III. There is a unique
point P of intersection of all three planes.

I : y + z = 0, II : z = 0, III : x = 0.

Examples and Methods

1 Example (Toolkit) Given system

∣∣∣∣∣∣∣
x + 4z = 1
x + y + 4z = 3

z = 2

∣∣∣∣∣∣∣, find the sys-

tem that results from swap(1,2) followed by combo(2,1,-1).

Solution: The steps are as follows, with the equivalent system equal to the
last display.∣∣∣∣∣∣

x + 4z = 1
x + y + 4z = 3

z = 2

∣∣∣∣∣∣
Original system.

∣∣∣∣∣∣
x + y + 4z = 3
x + 4z = 1

z = 2

∣∣∣∣∣∣ swap(1,2)

∣∣∣∣∣∣
y + = 2

x + 4z = 1
z = 2

∣∣∣∣∣∣
combo(2,1,-1)

2 Example (Inverse Toolkit) Let

∣∣∣∣∣∣∣
x − 3z = −1

2y + 6z = 4
z = 3

∣∣∣∣∣∣∣ be the sys-

tem produced by toolkit operations mult(2,2) and combo(2,1,-1). Find
the original system.

Solution: We begin by writing the given toolkit operation inverses, in reverse
order, as combo(2,1,1) and mult(2,1/2). The operations, in this order, are
performed on the given system, to find the original system two steps back, in
the last display.∣∣∣∣∣∣

x − 3z = −1
2y + 6z = 4

z = 3

∣∣∣∣∣∣
Given system.

∣∣∣∣∣∣
x + 2y + 3z = 3

2y + 6z = 4
z = 3

∣∣∣∣∣∣
combo(2,1,1)

One step back.

∣∣∣∣∣∣
x + 2y + 3z = 3

y + 3z = 2
z = 3

∣∣∣∣∣∣
mult(2,1/2)

Two steps back.
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3 Example (Planar System) Classify the system geometrically as one of the
three types displayed in Figures 1, 2, 3. Then solve for x and y.

x + 2y = 1,
3x + 6y = 3.

(9)

Solution: The second equation, divided by 3, gives the first equation. In short,
the two equations are proportional. The lines are geometrically equal lines,
as in Figure 2. The two equations are equivalent to the system

x + 2y = 1,
0 = 0.

To solve the system means to find all points (x, y) simultaneously common to
both lines, which are all points (x, y) on x+ 2y = 1.

A parametric representation of this line is possible, obtained by setting y = t
and then solving for x = 1 − 2t, −∞ < t < ∞. We report the solution as a
parametric solution, but the first solution is also valid.

x = 1− 2t,
y = t.

4 Example (No Solution) Classify the system geometrically as the type dis-
played in Figure 1. Explain why there is no solution.

x + 2y = 1,
3x + 6y = 6.

(10)

Solution: The second equation, divided by 3, gives x+ 2y = 2, a line parallel
to the first line x + 2y = 1. The lines are geometrically parallel lines, as in
Figure 1. The two equations are equivalent to the system

x + 2y = 1,
x + 2y = 2.

To solve the system means to find all points (x, y) simultaneously common to
both lines, which are all points (x, y) on x+ 2y = 1 and also on x+ 2y = 2. If
such a point (x, y) exists, then 1 = x+ 2y = 2 or 1 = 2, a contradictory signal
equation. Because 1 = 2 is false, then no common point (x, y) exists and we
report no solution.

Some readers will want to continue and write equations for x and y, a solution
to the problem. We emphasize that this is not possible, because there is no
solution at all.

The presence of a signal equation, which is a false equation used primarily to
detect no solution, will appear always in the solution process for a system of
equations that has no solution. Generally, this signal equation, if present, will
be distilled to the single equation “0 = 1.” For instance, 0 = 2 can be distilled
to 0 = 1 by dividing the first signal equation by 2.
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Exercises 3.1

Toolkit. Compute the equivalent sys-
tem of equations.

1. Given

∣∣∣∣∣∣
x + 2z = 1
x + y + 2z = 4

z = 0

∣∣∣∣∣∣, find

the system that results from
combo(2,1,-1).

2. Given

∣∣∣∣∣∣
x + 2z = 1
x + y + 2z = 4

z = 0

∣∣∣∣∣∣,
find the system that results
from swap(1,2) followed by
combo(2,1,-1).

3. Given

∣∣∣∣∣∣
x + 3z = 1
x + y + 3z = 4

z = 1

∣∣∣∣∣∣, find

the system that results from
combo(1,2,-1).

4. Given

∣∣∣∣∣∣
x + 3z = 1
x + y + 3z = 4

z = 1

∣∣∣∣∣∣,
find the system that results
from swap(1,2) followed by
combo(1,2,-1).

5. Given

∣∣∣∣∣∣
y + z = 2

3y + 3z = 6
y = 0

∣∣∣∣∣∣, find

the system that results from
swap(2,3), combo(2,1,-1).

6. Given

∣∣∣∣∣∣
y + z = 2

3y + 3z = 6
y = 0

∣∣∣∣∣∣, find

the system that results from
mult(2,1/3), combo(1,2,-1),
swap(2,3), swap(1,2).

Inverse Toolkit. Compute the equiv-
alent system of equations.

7. If

∣∣∣∣∣∣
− y = −3

x + y + 2z = 4
z = 0

∣∣∣∣∣∣ re-

sulted from combo(2,1,-1), then
find the original system.

8. If

∣∣∣∣∣∣
y = 3

x + 2z = 1
z = 0

∣∣∣∣∣∣ resulted

from swap(1,2) followed by
combo(2,1,-1), then find the
original system.

9. If

∣∣∣∣∣∣
x + 3z = 1

y − 3z = 4
z = 1

∣∣∣∣∣∣ resulted

from combo(1,2,-1), then find
the original system.

10. If

∣∣∣∣∣∣
x + 3z = 1
x + y + 3z = 4

z = 1

∣∣∣∣∣∣ resulted

from swap(1,2) followed by
combo(2,1,2), then find the
original system.

11. If

∣∣∣∣∣∣
y + z = 2

3y + 3z = 6
y = 0

∣∣∣∣∣∣resulted

from mult(2,-1), swap(2,3),
combo(2,1,-1), then find the
original system.

12. If

∣∣∣∣∣∣
2y + z = 2
3y + 3z = 6
y = 0

∣∣∣∣∣∣resulted

from mult(2,1/3),
combo(1,2,-1), swap(2,3),
swap(1,2), then find the original
system.

Planar System. Solve the xy–system
and interpret the solution geometri-
cally as

(a) parallel lines

(b) equal lines

(c) intersecting lines.

13.

∣∣∣∣ x + y = 1,
y = 1

∣∣∣∣
14.

∣∣∣∣ x + y = −1
x = 3

∣∣∣∣
15.

∣∣∣∣ x + y = 1
x + 2y = 2

∣∣∣∣



172 Linear Algebraic Equations

16.

∣∣∣∣ x + y = 1
x + 2y = 3

∣∣∣∣
17.

∣∣∣∣ x + y = 1
2x + 2y = 2

∣∣∣∣
18.

∣∣∣∣ 2x + y = 1
6x + 3y = 3

∣∣∣∣
19.

∣∣∣∣ x − y = 1
−x − y = −1

∣∣∣∣
20.

∣∣∣∣ 2x − y = 1
x − 0.5y = 0.5

∣∣∣∣
21.

∣∣∣∣ x + y = 1
x + y = 2

∣∣∣∣
22.

∣∣∣∣ x − y = 1
x − y = 0

∣∣∣∣
System in Space. For each xyz–
system:

(a) If no solution, then report dou-
ble decker, triple decker,
pup tent or book shelf.

(b) If infinitely many solutions, then
report single decker, open
book or saw tooth.

(c) If a unique intersection point,
then report the values of x, y
and z.

23.

∣∣∣∣∣∣
x − y + z = 2
x = 1

y = 0

∣∣∣∣∣∣
24.

∣∣∣∣∣∣
x + y − 2z = 3
x = 2

z = 1

∣∣∣∣∣∣
25.

∣∣∣∣∣∣
x − y = 2
x − y = 1
x − y = 0

∣∣∣∣∣∣

26.

∣∣∣∣∣∣
x + y = 3
x + y = 2
x + y = 1

∣∣∣∣∣∣
27.

∣∣∣∣∣∣
x + y + z = 3
x + y + z = 2
x + y + z = 1

∣∣∣∣∣∣
28.

∣∣∣∣∣∣
x + y + 2z = 2
x + y + 2z = 1
x + y + 2z = 0

∣∣∣∣∣∣
29.

∣∣∣∣∣∣
x − y + z = 2

2x − 2y + 2z = 4
y = 0

∣∣∣∣∣∣
30.

∣∣∣∣∣∣
x + y − 2z = 3

3x + 3y − 6z = 6
z = 1

∣∣∣∣∣∣
31.

∣∣∣∣∣∣
x − y + z = 2

0 = 0
0 = 0

∣∣∣∣∣∣
32.

∣∣∣∣∣∣
x + y − 2z = 3

0 = 0
1 = 1

∣∣∣∣∣∣
33.

∣∣∣∣∣∣
x + y = 2
x − y = 2

y = −1

∣∣∣∣∣∣
34.

∣∣∣∣∣∣
x − 2z = 4
x + 2z = 0

z = 2

∣∣∣∣∣∣
35.

∣∣∣∣∣∣
y + z = 2

3y + 3z = 6
y = 0

∣∣∣∣∣∣
36.

∣∣∣∣∣∣
x + 2z = 1

4x + 8z = 4
z = 0

∣∣∣∣∣∣
3.2 Frame Sequences

Imagine making a video of a linear algebra expert, who applies swap,
multiply and combination rules to a system of equations, in order to find
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the solution.

At each application of one of the toolkit operations swap, combo or mult,
the system of equations is re-written by the expert. The video captures
each new system in its own video frame. The first frame is the original
system and the last frame gives the solution to the system of equations.

The video is edited to eliminate all arithmetic details, leaving only the
frames which record the results of each computation. The resulting se-
quence of selected video frames documents the major steps. We call the
sequence of individual photos in this edited video a frame sequence.

Table 4. A Frame Sequence.

Frame 1 Frame 2 Frame 3

Original
System

{
x− y= 2,

3y=−3.

Apply
mult(2,1/3)

{
x− y= 2,

y=−1.

Apply
combo(2,1,1)

{
x = 1,
y=−1.

Lead Variables

A variable chosen from the variable list x, y is called a lead variable
provided it appears just once in the entire system of equations, and in
addition, its appearance reading left-to-right is first, with coefficient one.
The same definition applies to arbitrary variable lists, like x1, x2, . . . ,
xn. Symbol x is a lead variable in all three frames of the sequence in
Table 4. But symbol y fails to be a lead variable in frames 1 and 2. In
the final frame, both x and y are lead variables.

A free variable is a non-lead variable, detectable only from a frame in
which every non-zero equation has a lead variable.

A consistent system in which every variable is a lead variable must have
a unique solution. The system must look like the final frame of the
sequence in Table 4. More precisely, the variables appear in variable list
order to the left of the equal sign, each variable appearing just once, with
numbers to the right of the equal sign.

Unique Solution

To solve a system with a unique solution, we apply the toolkit operations
of swap, multiply and combination (acronyms swap, mult, combo), one
operation per frame, until the last frame displays the unique solution.
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Because all variables will be lead variables in the last frame, we seek
to create a new lead variable in each frame. Sometimes, this is not
possible, even if it is the general objective. Exceptions are swap and
multiply operations, which are often used to prepare for creation of a
lead variable. Listed in Table 5 are the rules and conventions that we
use to create frame sequences.

Table 5. Conventions and rules for frame sequence creation.

Order of Variables. Variables in equations appear in variable list or-
der to the left of the equal sign.

Order of Equations. Equations are listed in variable list order inher-
ited from their lead variables. Equations without lead variables
appear next. Equations without variables appear last. Multiple
swap operations convert any system to this convention.

New Lead Variable. Select a new lead variable as the first variable,
in variable list order, which appears among the equations without
a lead variable.

An illustration:

y + 4z = 2,
x + y = 3,
x + 2y + 3z = 4.

Frame 1. Original system.

x + 2y + 3z = 4,
x + y = 3,

y + 4z = 2.

Frame 2.

swap(1,3)

x + 2y + 3z = 4,
− y − 3z = −1,

y + 4z = 2.

Frame 3.
combo(1,2,-1)

x + 2y + 3z = 4,
− y − 3z = −1,

z = 1.

Frame 4.

combo(2,3,1)

x + 2y + 3z = 4,
y + 3z = 1,

z = 1.

Frame 5.
mult(2,-1)
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x − 3z = 2,
y + 3z = 1,

z = 1.

Frame 6.
combo(2,1,-2)

x − 3z = 2,
y = −2,

z = 1.

Frame 7.
combo(3,2,-3)

x = 5,
y = −2,

z = 1.

Frame 8. combo(3,1,3)

Last Frame.
Unique solution.

No Solution

A special case occurs in a frame sequence, when a nonzero equation
occurs having no variables. Called a signal equation, its occurrence
signals no solution, because the equation is false. Normally, we halt
the frame sequence at the point of first discovery, and then declare no
solution. An illustration:

y + 3z = 2,
x + y = 3,
x + 2y + 3z = 4.

Frame 1. Original system.

x + 2y + 3z = 4,
x + y = 3,

y + 3z = 2.

Frame 2.

swap(1,3)

x + 2y + 3z = 4,
− y − 3z = −1,

y + 3z = 2.

Frame 3.
combo(1,2,-1)

x + 2y + 3z = 4,
− y − 3z = −1,

0 = 1.

Frame 4.
Signal Equation 0 = 1.
combo(2,3,1)

The signal equation 0 = 1 is a false equation, therefore the last frame
has no solution. Because the toolkit neither creates nor destroys solu-
tions, then the original system in the first frame has no solution.

Readers who want to go on and write an answer for the system must
be warned that no such possibility exists. Values cannot be assigned
to any variables in the case of no solution. This can be perplexing,
especially in a final frame like
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x = 4,
z = −1,
0 = 1.

While it is true that x and z were assigned values, the final signal equa-
tion 0 = 1 is false, meaning any answer is impossible. There is no
possibility to write equations for all variables. There is no solution. It
is a tragic error to claim x = 4, z = −1 is a solution.

Infinitely Many Solutions

A system of equations having infinitely many solutions is solved from a
frame sequence construction that parallels the unique solution case. The
same quest for lead variables is made, hoping in the final frame to have
just the variable list on the left and numbers on the right.

The stopping criterion which identifies the final frame, in either the case
of a unique solution or infinitely many solutions, is exactly the same:

Last Frame Test. A frame is the last frame when every
nonzero equation has a lead variable. Remaining equations
have the form 0 = 0.

Any variables that are not lead variables, in the final frame, are called
free variables, because their values are completely undetermined. Any
missing variable must be a free variable.

y + 3z = 1,
x + y = 3,
x + 2y + 3z = 4.

Frame 1. Original system.

x + 2y + 3z = 4,
x + y = 3,

y + 3z = 1.

Frame 2.

swap(1,3)

x + 2y + 3z = 4,
− y − 3z = −1,

y + 3z = 1.

Frame 3.
combo(1,2,-1)

x + 2y + 3z = 4,
− y − 3z = −1,

0 = 0.

Frame 4.

combo(2,3,1)

x + 2y + 3z = 4,
y + 3z = 1,

0 = 0.

Frame 5.
mult(2,-1)
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x − 3z = 2,
y + 3z = 1,

0 = 0.

Frame 6. combo(2,1,-2)

Last Frame.
Lead=x, y, Free=z.

Last Frame to General Solution

Once the last frame of the frame sequence is obtained, then the general
solution can be written by a fixed and easy-to-learn algorithm.

Last Frame Algorithm
This process applies only to the last frame in the case of
infinitely many solutions.

(1) Assign invented symbols t1, t2, . . . to the free variables.1

(2) Isolate each lead variable.
(3) Back-substitute the free variable invented symbols.

To illustrate, assume the last frame of the frame sequence is

x − 3z = 2,
y + 3z = 1,

0 = 0,

Last Frame.
Lead variables x, y.

then the general solution is written as follows.

z = t1 The free variable z is assigned symbol t1.

x = 2 + 3z,
y = 1− 3z

The lead variables are x, y. Isolate them left.

x = 2 + 3t1,
y = 1− 3t1,
z = t1.

Back-substitute. Solution found.

In the last frame, variables appear left of the equal sign in variable
list order. Only invented symbols appear right of the equal sign. The
expression is called a standard general solution. The meaning:

Nothing Skipped Each solution of the system of equations can be
obtained by specializing the invented symbols t1,
t2, . . . to particular numbers.

It Works The general solution expression satisfies the sys-
tem of equations for all possible values of the
symbols t1, t2, . . . .
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General Solution and the Last Frame Algorithm

An additional illustration will be given for the last frame algorithm.
Assume variable list order x, y, z, w, u, v for the last frame

x + z + u+ v = 1,
y − u+ v = 2,

w + 2u− v = 0.

(11)

Every nonzero equation above has a lead variable. The lead variables
in (11) are the boxed symbols x, y, w. The free variables are z, u, v.

Assign invented symbols t1, t2, t3 to the free variables and back-substitute
in (11) to obtain a standard general solution

x = 1− t1 − t2 − t3,
y = 2 + t2 − t3,
w = −2t2 + t3,
z = t1,
u = t2,
v = t3.

or



x = 1− t1 − t2 − t3,
y = 2 + t2 − t3,
z = t1,
w = −2t2 + t3,
u = t2,
v = t3.

It is demanded by convention that general solutions be displayed in vari-
able list order. This is why the above display bothers to re-write the
equations in the new order on the right.

Exercises 3.2

Lead and free variables. For each
system assume variable list x1, . . . , x5.
List the lead and free variables.

1.

∣∣∣∣∣∣
x2+3x3 =0

x4 =0
0=0

∣∣∣∣∣∣
2.

∣∣∣∣∣∣
x2 = 0

x3 + 3x5 = 0
x4 + 2x5 = 0

∣∣∣∣∣∣
3.

∣∣∣∣∣∣
x2 + 3x3 = 0

x4 = 0
0 = 0

∣∣∣∣∣∣
4.

∣∣∣∣∣∣
x1 + 2x2 + 3x3 = 0

x4 = 0
0 = 0

∣∣∣∣∣∣
5.

∣∣∣∣∣∣∣∣
x1 + 2x2 + 3x3 = 0

0 = 0
0 = 0
0 = 0

∣∣∣∣∣∣∣∣

6.

∣∣∣∣∣∣
x1 + x2 = 0

x3 = 0
0 = 0

∣∣∣∣∣∣
7.

∣∣∣∣∣∣
x1 + x2 + 3x3 + 5x4 = 0

x5 = 0
0 = 0

∣∣∣∣∣∣
8.

∣∣∣∣∣∣
x1 + 2x2 + 3x4 + 4x5 = 0

x3 + x4 + x5 = 0
0 = 0

∣∣∣∣∣∣

9.

∣∣∣∣∣∣∣∣
x3 + 2x4 = 0

x5 = 0
0 = 0
0 = 0

∣∣∣∣∣∣∣∣

10.

∣∣∣∣∣∣∣∣
x4 + x5 = 0

0 = 0
0 = 0
0 = 0

∣∣∣∣∣∣∣∣
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11.

∣∣∣∣∣∣∣∣
x2 + 5x4 = 0

x3 + 2x4 = 0
x5 = 0
0 = 0

∣∣∣∣∣∣∣∣
12.

∣∣∣∣∣∣∣∣
x1 + 3x3 = 0

x2 + x4 = 0
x5 = 0
0 = 0

∣∣∣∣∣∣∣∣
Elementary Operations. Consider
the 3× 3 system

x + 2y + 3z = 2,
−2x + 3y + 4z = 0,
−3x + 5y + 7z = 3.

Define symbols combo, swap and
mult as in the textbook. Write the
3 × 3 system which results from each
of the following operations.

13. combo(1,3,-1)

14. combo(2,3,-5)

15. combo(3,2,4)

16. combo(2,1,4)

17. combo(1,2,-1)

18. combo(1,2,-e2)

19. mult(1,5)

20. mult(1,-3)

21. mult(2,5)

22. mult(2,-2)

23. mult(3,4)

24. mult(3,5)

25. mult(2,-π)

26. mult(2,π)

27. mult(1,e2)

28. mult(1,-e−2)

29. swap(1,3)

30. swap(1,2)

31. swap(2,3)

32. swap(2,1)

33. swap(3,2)

34. swap(3,1)

Unique Solution. Create a frame se-
quence for each system, whose final
frame displays the unique solution of
the system of equations.

35.

∣∣∣∣x1+3x2= 0
x2=−1

∣∣∣∣
36.

∣∣∣∣x1+2x2= 0
x2=−2

∣∣∣∣
37.

∣∣∣∣x1+3x2=2
x1− x2=1

∣∣∣∣
38.

∣∣∣∣x1+ x2=−1
x1+2x2=−2

∣∣∣∣
39.

∣∣∣∣∣∣
x1 + 3x2 + 2x3 = 1

x2 + 4x3 = 3
4x3 = 4

∣∣∣∣∣∣
40.

∣∣∣∣∣∣
x1 = 1

3x1 + x2 = 0
2x1 + 2x2 + 3x3 = 3

∣∣∣∣∣∣
41.

∣∣∣∣∣∣
x1 + x2 + 3x3 = 1

x2 = 2
3x3 = 0

∣∣∣∣∣∣
42.

∣∣∣∣∣∣
x1 + 3x2 + 2x3 = 1

x2 = 3
3x3 = 0

∣∣∣∣∣∣
43.

∣∣∣∣∣∣∣∣
x1 = 2
x1 + 2x2 = 1

2x1 + 2x2 + x3 = 0
3x1 + 6x2 + x3 + 2x4 = 2

∣∣∣∣∣∣∣∣
44.

∣∣∣∣∣∣∣∣
x1 = 3
x1 − 2x2 = 1

2x1 + 2x2 + x3 = 0
3x1 + 6x2 + x3 + 4x4 = 2

∣∣∣∣∣∣∣∣
45.

∣∣∣∣∣∣∣∣
x1 + x2 = 2
x1 + 2x2 = 1

2x1 + 2x2 + x3 = 0
3x1 + 6x2 + x3 + 2x4 = 2

∣∣∣∣∣∣∣∣
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46.

∣∣∣∣∣∣∣∣
x1 − 2x2 = 3
x1 − x2 = 1

2x1 + 2x2 + x3 = 0
3x1 + 6x2 + x3 + 4x4 = 1

∣∣∣∣∣∣∣∣

47.

∣∣∣∣∣∣∣∣∣∣
x1 = 3
x1 − x2 = 1

2x1 + 2x2 + x3 = 0
3x1 + 6x2 + x3 + 4x4 = 1
3x1 x3 + 2x5 = 1

∣∣∣∣∣∣∣∣∣∣

48.

∣∣∣∣∣∣∣∣∣∣
x1 = 2
x1 − x2 = 0

2x1 + 2x2 + x3 = 1
3x1 + 6x2 + x3 + 3x4 = 1
3x1 + x3 + 3x5 = 1

∣∣∣∣∣∣∣∣∣∣

49.

∣∣∣∣∣∣∣∣∣∣
x1 + x2 = 2
x1 − x2 = 0

2x1 + 2x2 + 2x3 = 1
3x1 + 6x2 + x3 + 2x4 = 1
3x1 + x3 + 3x5 = 2

∣∣∣∣∣∣∣∣∣∣

50.

∣∣∣∣∣∣∣∣∣∣
x1 − x2 = 3
x1 − 2x2 = 0

2x1 + 2x2 + x3 = 1
3x1 + 6x2 + x3 + 3x4 = 1
3x1 + x3 + x5 = 3

∣∣∣∣∣∣∣∣∣∣
No Solution. Develop a frame se-
quence for each system, whose final
frame contains a signal equation (e.g.,
0 = 1), thereby showing that the sys-
tem has no solution.

51.

∣∣∣∣x1+3x2=0
x1+3x2=1

∣∣∣∣
52.

∣∣∣∣ x1+2x2=1
2x1+4x2=2

∣∣∣∣
53.

∣∣∣∣∣∣
x1 + 3x2 + 2x3 = 1

x2 + 4x3 = 3
x2 + 4x3 = 4

∣∣∣∣∣∣
54.

∣∣∣∣∣∣
x1 = 0

3x1 + x2 + 3x3 = 1
2x1 + 2x2 + 6x3 = 0

∣∣∣∣∣∣
55.

∣∣∣∣∣∣
x1 + x2 + 3x3 = 1

x2 = 2
x1 + 2x2 + 3x3 = 2

∣∣∣∣∣∣

56.

∣∣∣∣∣∣
x1 + 3x2 + 2x3 = 1

x2 + 2x3 = 3
x1 + 5x3 = 5

∣∣∣∣∣∣
57.

∣∣∣∣∣∣∣∣
x1 = 2
x1 + 2x2 = 2
x1 + 2x2 + x3 + 2x4 = 0
x1 + 6x2 + x3 + 2x4 = 2

∣∣∣∣∣∣∣∣
58.

∣∣∣∣∣∣∣∣
x1 = 3
x1 − 2x2 = 1

2x1 + 2x2 + x3 + 4x4 = 0
3x1 + 6x2 + x3 + 4x4 = 2

∣∣∣∣∣∣∣∣

59.

∣∣∣∣∣∣∣∣∣∣
x1 = 3
x1 − x2 = 1

2x1 + 2x2 + x3 = 0
3x1 + 6x2 + x3 + 4x4 − x5 = 1
− 6x2 − x3 − 4x4 + x5 = 0

∣∣∣∣∣∣∣∣∣∣

60.

∣∣∣∣∣∣∣∣∣∣
x1 = 3
x1 − x2 = 1

3x1 + 2x2 + x3 = 0
3x1 + 6x2 + x3 + 4x4 − x5 = 1
− 6x2 − x3 − 4x4 + x5 = 2

∣∣∣∣∣∣∣∣∣∣
Infinitely Many Solutions. Display a
frame sequence for each system, whose
final frame has this property: each
nonzero equation has a lead variable.
Then apply the last frame algo-
rithm to write out the standard gen-
eral solution of the system. Assume in
each system variable list x1 to x5.

61.

∣∣∣∣∣∣
x1+x2+3x3 =0

x2 +x4 =0
0=0

∣∣∣∣∣∣
62.

∣∣∣∣∣∣
x1 + x3 = 0
x1 + x2 + x3 + 3x5 = 0

x4 + 2x5 = 0

∣∣∣∣∣∣
63.

∣∣∣∣∣∣
x2 + 3x3 = 0

x4 = 0
0 = 0

∣∣∣∣∣∣
64.

∣∣∣∣∣∣
x1 + 2x2 + 3x3 = 0

x4 = 0
0 = 0

∣∣∣∣∣∣
65.

∣∣∣∣ x1 + 2x2 + 3x3 = 0
x3 + x4 0 = 0

∣∣∣∣
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66.

∣∣∣∣∣∣
x1 + x2 = 0

x2 + x3 = 0
x3 0 = 1

∣∣∣∣∣∣
67.

∣∣∣∣ x1 + x2 + 3x3 + 5x4 + 2x5 = 0
x5 = 0

∣∣∣∣
68.

∣∣∣∣ x1 + 2x2 + x3 + 3x4 + 4x5 = 0
x3 + x4 + x5 = 0

∣∣∣∣
69.

∣∣∣∣∣∣
x3 + 2x4 + x5 = 0

2x3 + 2x4 + 2x5 = 0
x5 = 0

∣∣∣∣∣∣
70.

∣∣∣∣∣∣∣∣
x4 + x5 = 0

0 = 0
0 = 0
0 = 0

∣∣∣∣∣∣∣∣
71.

∣∣∣∣∣∣∣∣
x2 + x3 + 5x4 = 0

x3 + 2x4 = 0
x5 = 0
0 = 0

∣∣∣∣∣∣∣∣
72.

∣∣∣∣∣∣∣∣
x1 + 3x3 = 0
x1 + x2 + x4 = 0

x5 = 0
0 = 0

∣∣∣∣∣∣∣∣
Inverses of Elementary Operations.
Given the final frame of a sequence is∣∣∣∣∣∣

3x + 2y + 4z = 2
x + 3y + 2z = −1

2x + y + 5z = 0

∣∣∣∣∣∣

and the given operations, find the orig-
inal system in the first frame.

73. combo(1,2,-1), combo(2,3,-3),
mult(1,-2), swap(2,3).

74. combo(1,2,-1), combo(2,3,3),
mult(1,2), swap(3,2).

75. combo(1,2,-1), combo(2,3,3),
mult(1,4), swap(1,3).

76. combo(1,2,-1), combo(2,3,4),
mult(1,3), swap(3,2).

77. combo(1,2,-1), combo(2,3,3),
mult(1,4), swap(1,3),
swap(2,3).

78. swap(2,3), combo(1,2,-1),
combo(2,3,4), mult(1,3),
swap(3,2).

79. combo(1,2,-1), combo(2,3,3),
mult(1,4), swap(1,3),
mult(2,3).

80. combo(1,2,-1), combo(2,3,4),
mult(1,3), swap(3,2),
combo(2,3,-3).

3.3 General Solution Theory

Consider the nonhomogeneous system

a11x1 + a12x2 + · · ·+ a1nxn = b1,
a21x1 + a22x2 + · · ·+ a2nxn = b2,

...
am1x1 + am2x2 + · · ·+ amnxn = bm.

(12)

The general solution of system (12) is an expression which represents
all possible solutions of the system.

The example above for infinitely many solutions contained an unmoti-
vated algorithm which expressed the general solution in terms of invented
symbols t1, t2, . . . , which in mathematical literature are called parame-
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ters. We outline here some topics from calculus which form the assumed
background for this subject.

Equations for Points, Lines and Planes

Background from analytic geometry appears in Table 6. In this table,
t1 and t2 are parameters, which means they are allowed to take on
any value between −∞ and +∞. The algebraic equations describing the
geometric objects are called parametric equations.

Table 6. Parametric equations with geometrical significance.

x = d1,
y = d2,
z = d3.

Point. The equations have no parameters
and describe a single point.

x = d1 + a1t1,
y = d2 + a2t1,
z = d3 + a3t1.

Line. The equations with parameter t1
describe a straight line through (d1, d2, d3)
with tangent vector a1~ı+ a2~+ a3~k.

x = d1 + a1t1 + b1t2,
y = d2 + a2t1 + b2t2,
z = d3 + a3t1 + b3t2.

Plane. The equations with parameters t1,
t2 describe a plane containing (d1, d2, d3).
The cross product (a1~ı+a2~+a3~k)× (b1~ı+
b2~+ b3~k) is normal to the plane.

To illustrate, the parametric equations x = 2− 6t1, y = −1− t1, z = 8t1
describe the unique line of intersection of the three planes

x + 2y + z = 0,
2x − 4y + z = 8,
3x − 2y + 2z = 8.

(13)

Details appear in Example 5.

General Solutions

Definition 1 (Parametric Equations)
Equations of the form

x1 = d1 + c11t1 + · · ·+ c1ktk,
x2 = d2 + c21t1 + · · ·+ c2ktk,

...
xn = dn + cn1t1 + · · ·+ cnktk

(14)

are called parametric equations for the variables x1, . . . , xn.
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The numbers d1, . . . , dn, c11, . . . , cnk are known constants and the sym-
bols t1, . . . , tk are parameters, which are treated as variables that may
be assigned any value from −∞ to ∞.

Three cases appear often in examples and exercises, illustrated here for
variables x1, x2, x3:

No parameters

x1 = d1
x2 = d2
x3 = d3

One parameter

x1 = d1 + a1t1
x2 = d2 + a2t1
x3 = d3 + a3t1

Two parameters

x1 = d1 + a1t1 + b1t2
x2 = d2 + a2t1 + b2t2
x3 = d3 + a3t1 + b3t2

Definition 2 (General Solution)
A general solution of a linear algebraic system of equations (12) is a
set of parametric equations (14) plus two additional requirements:

Equations (14) satisfy (5) for all real values of t1, . . . , tk.(15)

Any solution of (12) can be obtained from (14) by special-
izing values of the parameters t1, t2, . . . tk.

(16)

A general solution is sometimes called a parametric solution. Require-
ment (15) means that the solution works. Requirement (16) means
that no solution was skipped.

Definition 3 (Standard General Solution)
Parametric equations (14) are called standard if they satisfy for distinct
subscripts j1, i2, . . . , jk the equations

xj1 = t1, xj2 = t2, . . . , xjk = tk.(17)

The relations mean that the full set of parameter symbols t1, t2, . . . , tk
were assigned to k distinct variable names (the free variables) selected
from x1, . . . , xn.

A standard general solution of system (12) is a special set of para-
metric equations (14) satisfying (15), (16) and additionally (17). Frame
sequences always produce a standard general solution.

Theorem 2 (Standard General Solution)
A standard general solution has the fewest possible parameters and it repre-
sents each solution of the linear system by a unique set of parameter values.

The theorem supplies the theoretical basis for the method of frame se-
quences, which formally appears as an algorithm on page 185. The proof
of Theorem 2 is delayed until page 206. It is unusual if this proof is a
subject of a class lecture, due to its length; it is recommended reading
for the mathematically inclined, after understanding the examples.
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Reduced Echelon System

Consider a sequence of toolkit operations and the corresponding frame
sequence. The last frame, from which we write the general solution, is
called a reduced echelon system.

Definition 4 (Reduced Echelon System)
A linear system in which each nonzero equation has a lead variable is
called a reduced echelon system. Implicitly assumed are the following
definitions and rules.

• A lead variable is a variable which appears with coefficient one
in the very first location, left to right, in exactly one equation.

• A variable, not used as a lead variable, is called a free variable.
Variables that do not appear at all are free variables.

• The nonzero equations are listed in variable list order, inherited
from their lead variables. Equations without variables are listed
last.

• All variables in an equation are required to appear in variable list
order. Therefore, within an equation all free variables, if any, are
to the right of the lead variable.

Detecting a Reduced Echelon System. A given system can be
rapidly inspected, to detect if it can be changed into a reduced eche-
lon system. We assume that within each equation, variables appear in
variable list order.

A nonhomogeneous linear system is recognized as a reduced
echelon system when the first variable listed in each equation
has coefficient one and that symbol appears nowhere else in
the system of equations.2

Such a system can be re-written, by swapping equations and enforcing
the rules above, so that the resulting system is a reduced echelon system.

Rank and Nullity

A reduced echelon system splits the variable names x1, . . . , xn into the
lead variables and the free variables. Because the entire variable list
is exhausted by these two sets, then

lead variable count + free variable count = number of variables.
2Children are better at such classifications than adults. A favorite puzzle among

kids is a drawing which contains disguised figures, like a bird, a fire hydrant and
Godzilla. Routinely, children find all the disguised figures.
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Definition 5 (Rank and Nullity)
The number of lead variables in a reduced echelon system is called the
rank of the system. The number of free variables in a reduced echelon
system is called the nullity of the system.

Determining rank and nullity. First, display a frame sequence
which starts with that system and ends in a reduced echelon system.
Then the rank and nullity of the system are those determined by the
final frame.

Theorem 3 (Rank and Nullity)
The following equation holds:

rank + nullity = number of variables.

Computers and Reduced Echelon Form

Computer algebra systems and computer numerical laboratories compute
from a given linear system (5) a new equivalent system of identical size,
which is called the reduced row-echelon form, abbreviated rref.

If the newly computed equivalent system has no signal equation, then
it is a consistent linear system, which is a reduced echelon system. A
frame sequence starting with the original system has this system as its
last frame.

If the new system has a signal equation, then it is an inconsistent sys-
tem. There is only one signal equation allowed, it must be 0 = 1 and
immediately precede any 0 = 0 equations.

Every computer-produced rref for a consistent system is a reduced
echelon system. For inconsistent systems, the computer-produced
rref gives a final frame with a signal equation, causing us to halt the
sequence and report no solution.

To use computer assist requires matrix entry of the data, a topic which
is delayed until a later chapter. Popular commercial programs used to
perform the computer assist are maple, mathematica and matlab.

Elimination

The elimination algorithm applies at each algebraic step one of the three
toolkit rules defined in Table 1: swap, multiply and combination.

The objective of each algebraic step is to increase the number of
lead variables. Equivalently, each algebraic step tries to eliminate
one repetition of a variable name, which justifies calling the process
the method of elimination. The process of elimination stops when a
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signal equation (typically 0 = 1) is found. Otherwise, elimination stops
when no more lead variables can be found, and then the last system of
equations is a reduced echelon system. A detailed explanation of the
process has been given above in the discussion of frame sequences.

Reversibility of the algebraic steps means that no solutions are created
nor destroyed throughout the algebraic steps: the original system and
all systems in the intermediate steps have exactly the same solutions.

The final reduced echelon system has either a unique solution or infinitely
many solutions, in both cases we report the general solution. In the
infinitely many solution case, the last frame algorithm on page 177 is
used to write out a general solution.

Theorem 4 (Elimination)
Every linear system (5) has either no solution or else it has exactly the same
solutions as an equivalent reduced echelon system, obtained by repeated use
of toolkit rules swap, multiply and combination (page 165).

An Elimination Algorithm

An equation is said to be processed if it has a lead variable. Otherwise,
the equation is said to be unprocessed.

The acronym rref abbreviates the phrase reduced row echelon form.
This abbreviation appears in matrix literature, so we use it instead of
creating an acronym for reduced echelon form (the word row is missing).

1. If an equation “0 = 0” appears, then move it to the end. If a
signal equation “0 = c” appears (c 6= 0 required), then the system
is inconsistent. In this case, the algorithm halts and we report no
solution.

2. Identify the first symbol xr, in variable list order x1, . . . , xn, which
appears in some unprocessed equation. Apply the multiply rule to
insure xr has leading coefficient one. Apply the combination rule
to eliminate variable xr from all other equations. Then xr is a lead
variable: the number of lead variables has been increased by one.

3. Apply the swap rule repeatedly to move this equation past all pro-
cessed equations, but before the unprocessed equations. Mark the
equation as processed, e.g., replace xr by boxed symbol xr .

4. Repeat steps 1–3, until all equations have been processed once. Then
lead variables xi1 , . . . , xim have been defined and the last system is
a reduced echelon system.

Uniqueness, Lead Variables and RREF

Elimination performed on a given system by two different persons will
result in the same reduced echelon system. The answer is unique, because
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attention has been paid to the natural order of the variable list x1, . . . ,
xn. Uniqueness results from critical step 2, also called the rref step:

Always select a lead variable as the next possible variable
name in the original list order x1, . . . , xn, taken from all
possible unprocessed equations.

This step insures that the final system is a reduced echelon system.

The wording next possible must be used, because once a variable name
is used for a lead variable it may not be used again. The next variable
following the last–used lead variable, from the list x1, . . . , xn, might not
appear in any unprocessed equation, in which case it is a free variable.
The next variable name in the original list order is then tried as a lead
variable.

Numerical Optimization

It is common for references to divide the effort for obtaining an rref into
two stages, for which the second stage is back-substitution. This divi-
sion of effort is motivated by numerical efficiency considerations, largely
historical. The reader is advised to adopt the numerical point of view in
hand calculations, as soon as possible. It changes the details of a frame
sequence to the rref , which most readers find equally advantageous. The
reason for the algorithm in the text is motivational: to be an expert, you
have to first know what you are trying to accomplish. Exactly how to
implement the toolkit to arrive at the rref will vary for each person.
The effect for us is the following recommendation:

Don’t bother to eliminate a lead variable from the other
equations. Go on to select the next lead variable and pre-
pare that equation accordingly. Do the elimination of a lead
variable from other equations at the end of the frame se-
quence, from last lead variable to first lead variable in reverse
variable list order (called back-substitution).

Avoiding Fractions

Integer arithmetic should be used, when possible, to speed up hand com-
putation in elimination. To avoid fractions, the rref step 2 may be mod-
ified to read with leading coefficient nonzero. The final division to obtain
leading coefficient one is then delayed until the last possible moment.
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Examples and Methods

5 Example (Line of Intersection) Show that the parametric equations x =
2− 6t, y = −1− t, z = 8t represent a line through (2,−1, 0) with tangent
−6~ı− ~ which is the line of intersection of the three planes

x + 2y + z = 0,
2x − 4y + z = 8,
3x − 2y + 2z = 8.

(18)

Solution: Using t = 0 in the parametric solution shows that (2,−1, 0) is on

the line. The tangent to the parametric curve is x′(t)~ı + y′(t)~ + z′(t)~k, which
computes to −6~ı − ~. The details for showing the parametric solution satisfies
the three equations simultaneously:

LHS = x+ 2y + z First equation left side.

= (2− 6t) + 2(−1− t) + 8t Substitute parametric solution.

= 0 Matches the RHS in (18).

LHS = 2x− 4y + z Second equation left side.

= 2(2− 6t)− 4(−1− t) + 8t Substitute.

= 8 Matches (18).

LHS = 3x− 2y + 2z Third equation left side.

= 3(2− 6t)− 2(−1− t) + 16t Substitute.

= 8 Matches (18).

6 Example (Geometry of Solutions) Solve the system and interpret the so-
lution geometrically.

x + 2z = 3,
y + z = 1.

Solution: We begin by displaying the general solution, which is a line:

x = 3− 2t1,
y = 1− t1,
z = t1, −∞ < t1 <∞.

In standard xyz-coordinates, this line passes through (3, 1, 0) with tangent di-

rection −2~ı− ~+ ~k.

Details. To justify this solution, we observe that the first frame equals the
last frame, which is a reduced echelon system in variable list order x, y, z. The
standard general solution will be obtained from the last frame algorithm.

x + 2z = 3,
y + z = 1.

Frame 1 equals the last frame, a reduced eche-
lon system The lead variables are x, y and the
free variable is z.

x = 3 − 2z,
y = 1 − z,
z = t1.

Assign to z invented symbol t1. Solve for lead
variables x and y in terms of the free variable
z.
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x = 3 − 2t1,
y = 1 − t1,
z = t1.

Back-substitute for free variable z. This is the
standard general solution. It is geometrically a
line, by Table 6.

7 Example (Symbolic Answer Check) Perform an answer check on

x + 2z = 3,
y + z = 1,

for the general solution

x = 3− 2t1,
y = 1− t1,
z = t1, −∞ < t1 <∞.

Solution: The displayed answer can be checked manually by substituting the
symbolic general solution into the equations x+ 2z = 3, y + z = 1, as follows:

x+ 2z = (3− 2t1) + 2(t1)
= 3,

y + z = (1− t1) + (t1)
= 1.

Therefore, the two equations are satisfied for all values of the symbol t1.

Errors and Skipped Solutions. An algebraic error could lead to a claimed
solution x = 3, y = 1, z = 0, which also passes the answer check. While it
is true that x = 3, y = 1, z = 0 is a solution, it is not the general solution.
Infinitely many solutions were skipped in the answer check.

General Solution and Free Variables. The number of lead variables is
called the rank. The number of free variables is called the nullity. The
basic relation is rank + nullity = number of variables. Computer algebra
systems can compute the rank independently, as a double-check against hand
computation. This check is useful for discovering skipped solution errors. The
rank is unaffected by the ordering of variables.

8 Example (Elimination) Solve the system.

w + 2x − y + z = 1,
w + 3x − y + 2z = 0,

x + z = −1.

Solution: The answer using the natural variable list order w, x, y, z is the
standard general solution

w = 3 + t1 + t2,
x = −1− t2,
y = t1,
z = t2, −∞ < t1, t2 <∞.
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Details. Elimination will be applied to obtain a frame sequence whose last
frame justifies the reported solution. The details amount to applying the three
rules swap, multiply and combination for equivalent equations on page 165
to obtain a last frame which is a reduced echelon system. The standard general
solution from the last frame algorithm matches the one reported above.

Let’s mark processed equations with a box enclosing the lead variable (w is
marked w ).

w + 2x − y + z = 1
w + 3x − y + 2z = 0

x + z = −1

1

w + 2x − y + z = 1
0 + x + 0 + z = −1

x + z = −1

2

w + 2x − y + z = 1
x + z = −1

0 = 0

3

w + 0 − y − z = 3
x + z = −1

0 = 0

4

1 Original system. Identify the variable order as w, x, y, z.

2 Choose w as a lead variable. Eliminate w from equation 2 by using
combo(1,2,-1).

3 The w-equation is processed. Let x be the next lead variable. Eliminate
x from equation 3 using combo(2,3,-1).

4 Eliminate x from equation 1 using combo(2,1,-2). Mark the x-equation
as processed. Reduced echelon system found.

The four frames make the frame sequence which takes the original system
into a reduced echelon system. Basic exposition rules apply:

1. Variables in an equation appear in variable list order.

2. Equations inherit variable list order from the lead variables.

The last frame of the sequence, which must be a reduced echelon system, is
used to write out the general solution, using the last frame algorithm.

w = 3 + y + z
x = −1 − z
y = t1
z = t2

Solve for the lead variables w ,
x . Assign invented symbols t1,
t2 to the free variables y, z.
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w = 3 + t1 + t2
x = −1 − t2
y = t1
z = t2

Back-substitute free variables into
the lead variable equations to get
a standard general solution.

Answer check. The check will be performed according to the outline on page
204. The justification for this forward reference is to illustrate how to check
answers without using the invented symbols t1, t2, . . . in the details.

Step 1. The nonhomogeneous trial solution w = 3, x = −1, y = z = 0
is obtained by setting t1 = t2 = 0. It is required to satisfy the
nonhomogeneous system

w + 2x − y + z = 1,
w + 3x − y + 2z = 0,

x + z = −1.

Step 2. The partial derivatives ∂t1 , ∂t2 are applied to the parametric solution
to obtain two homogeneous trial solutions w = 1, x = 0, y = 1,
z = 0 and w = 1, x = −1, y = 0, z = 1, which are required to
satisfy the homogeneous system

w + 2x − y + z = 0,
w + 3x − y + 2z = 0,

x + z = 0.

Each trial solution from Step 1 and Step 2 is checked by direct substitution.

9 Example (No solution) Verify by applying elimination that the system has
no solution.

w + 2x − y + z = 0,
w + 3x − y + 2z = 0,

x + z = 1.

Solution: Elimination (page 186) will be applied, using the toolkit rules swap,
multiply and combination (page 165).

w + 2x − y + z = 0
w + 3x − y + 2z = 0

x + z = 1

1

w + 2x − y + z = 0
0 + x + 0 + z = 0

x + z = 1

2

w + 2x − y + z = 0
x + z = 0

0 = 1

3

1 Original system. Select variable order w, x, y, z. Identify lead variable
w.
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2 Eliminate w from other equations using combo(1,2,-1). Mark the w-
equation processed with w .

3 Identify lead variable x. Then eliminate x from the third equation using
combo(2,3,-1).

The appearance of the signal equation “0 = 1” means no solution. The logic:
if the original system has a solution, then so does the present equivalent system,
hence 0 = 1, a contradiction. Elimination halts, because of the inconsistent
system containing the false equation “0 = 1.”

10 Example (Reduced Echelon form) Find an equivalent system in reduced
echelon form.

x1 + 2x2 − x3 + x4 = 1,
x1 + 3x2 − x3 + 2x4 = 0,

x2 + x4 = −1.

Solution: The answer using the natural variable list order x1, x2, x2, x4 is the
non-homogeneous system in reduced echelon form (briefly, rref form)

x1 − x3 − x4 = 3
x2 + x4 = −1

0 = 0

The lead variables are x1, x2 and the free variables are x3, x4. The standard
general solution of this system is

x1 = 3 + t1 + t2,
x2 = −1− t2,
x3 = t1,
x4 = t2, −∞ < t1, t2 <∞.

The details are the same as Example 8, with w = x1, x = x2, y = x3, z = x4.
The frame sequence has three frames and the last frame is used to display the
general solution.

Answer check in maple. The output from the maple code below duplicates
the reduced echelon system reported above and the general solution.

with(LinearAlgebra):

eq1:=x[1]+2*x[2]-x[3]+x[4]=1:eq2:=x[1]+3*x[2]-x[3]+2*x[4]=0:

eq3:=x[2]+x[4]=-1:eqs:=[eq1,eq2,eq3]:var:=[x[1],x[2],x[3],x[4]]:

A:=GenerateMatrix(eqs,var,augmented);

F:=ReducedRowEchelonForm(A);

GenerateEquations(F,var);

F,LinearSolve(F,free=t); # general solution answer check

A,LinearSolve(A,free=t); # general solution answer check
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Exercises 3.3

Classification. Classify the paramet-
ric equations as a point, line or plane,
then compute as appropriate the tan-
gent to the line or the normal to the
plane.

1. x = 0, y = 1, z = −2

2. x = 1, y = −1, z = 2

3. x = t1, y = 1 + t1, z = 0

4. x = 0, y = 0, z = 1 + t1

5. x = 1 + t1, y = 0, z = t2

6. x = t2 + t1, y = t2, z = t1

7. x = 1, y = 1 + t1, z = 1 + t2

8. x = t2 + t1, y = t1 − t2, z = 0

9. x = t2, y = 1 + t1, z = t1 + t2

10. x = 3t2 + t1, y = t1 − t2, z = 2t1

Reduced Echelon System. Solve the
xyz–system and interpret the solution
geometrically.

11.

∣∣∣∣ y + z = 1
x + 2z = 2

∣∣∣∣
12.

∣∣∣∣ x + z = 1
y + 2z = 4

∣∣∣∣
13.

∣∣∣∣ y + z = 1
x + 3z = 2

∣∣∣∣
14.

∣∣∣∣ x + z = 1
y + z = 5

∣∣∣∣
15.

∣∣∣∣ x + z = 1
2x + 2z = 2

∣∣∣∣
16.

∣∣∣∣ x + y = 1
3x + 3y = 3

∣∣∣∣
17.

∣∣ x + y + z = 1.
∣∣

18.
∣∣ x + 2y + 4z = 0.

∣∣
19.

∣∣∣∣ x + y = 2
z = 1

∣∣∣∣

20.

∣∣∣∣ x + 4z = 0
y = 1

∣∣∣∣
Homogeneous System. Solve the
xyz–system using elimination with
variable list order x, y, z.

21.

∣∣∣∣ y + z = 0
2x + 2z = 0

∣∣∣∣
22.

∣∣∣∣ x + z = 0
2y + 2z = 0

∣∣∣∣
23.

∣∣∣∣ x + z = 0
2z = 0

∣∣∣∣
24.

∣∣∣∣ y + z = 0
y + 3z = 0

∣∣∣∣
25.

∣∣∣∣ x + 2y + 3z = 0
0 = 0

∣∣∣∣
26.

∣∣∣∣ x + 2y = 0
0 = 0

∣∣∣∣
27.

∣∣∣∣∣∣
y + z = 0

2x + 2z = 0
x + z = 0

∣∣∣∣∣∣
28.

∣∣∣∣∣∣
2x + y + z = 0
x + 2z = 0
x + y − z = 0

∣∣∣∣∣∣
29.

∣∣∣∣∣∣
x + y + z = 0

2x + 2z = 0
x + z = 0

∣∣∣∣∣∣
30.

∣∣∣∣∣∣
x + y + z = 0

2x + 2z = 0
3x + y + 3z = 0

∣∣∣∣∣∣
Nonhomogeneous 3 × 3 System.
Solve the xyz-system using elimination
and variable list order x, y, z.

31.

∣∣∣∣ y = 1
2z = 2

∣∣∣∣
32.

∣∣∣∣ x = 1
2z = 2

∣∣∣∣
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33.

∣∣∣∣∣∣
y + z = 1

2x + 2z = 2
x + z = 1

∣∣∣∣∣∣
34.

∣∣∣∣∣∣
2x + y + z = 1
x + 2z = 2
x + y − z = −1

∣∣∣∣∣∣
35.

∣∣∣∣∣∣
x + y + z = 1

2x + 2z = 2
x + z = 1

∣∣∣∣∣∣
36.

∣∣∣∣∣∣
x + y + z = 1

2x + 2z = 2
3x + y + 3z = 3

∣∣∣∣∣∣
37.

∣∣∣∣∣∣
2x + y + z = 3
2x + 2z = 2
4x + y + 3z = 5

∣∣∣∣∣∣
38.

∣∣∣∣∣∣
2x + y + z = 2
6x y + 5z = 2
4x + y + 3z = 2

∣∣∣∣∣∣
39.

∣∣∣∣∣∣
6x + 2y + 6z = 10
6x y + 6z = 11
4x + y + 4z = 7

∣∣∣∣∣∣
40.

∣∣∣∣∣∣
6x + 2y + 4z = 6
6x y + 5z = 9
4x + y + 3z = 5

∣∣∣∣∣∣
Nonhomogeneous 3 × 4 System.
Solve the yzuv-system using elimina-
tion with variable list order y, z, u, v.

41.

∣∣∣∣∣∣
y + z + 4u + 8v = 10

2z − u + v = 10
2y − u + 5v = 10

∣∣∣∣∣∣

42.

∣∣∣∣∣∣
y + z + 4u + 8v = 10

2z − 2u + 2v = 0
y + 3z + 2u + 5v = 5

∣∣∣∣∣∣
43.

∣∣∣∣∣∣
y + z + 4u + 8v = 1

2z − 2u + 4v = 0
y + 3z + 2u + 6v = 1

∣∣∣∣∣∣
44.

∣∣∣∣∣∣
y + 3z + 4u + 8v = 1

2z − 2u + 4v = 0
y + 3z + 2u + 6v = 1

∣∣∣∣∣∣
45.

∣∣∣∣∣∣
y + 3z + 4u + 8v = 1

2z − 2u + 4v = 0
y + 4z + 2u + 7v = 1

∣∣∣∣∣∣
46.

∣∣∣∣∣∣
y + z + 4u + 9v = 1

2z − 2u + 4v = 0
y + 4z + 2u + 7v = 1

∣∣∣∣∣∣
47.

∣∣∣∣∣∣
y + z + 4u + 9v = 1

2z − 2u + 4v = 0
y + 4z + 2u + 7v = 1

∣∣∣∣∣∣
48.

∣∣∣∣∣∣
y + z + 4u + 9v = 10

2z − 2u + 4v = 4
y + 4z + 2u + 7v = 8

∣∣∣∣∣∣
49.

∣∣∣∣∣∣
y + z + 4u + 9v = 2

2z − 2u + 4v = 4
y + 3z + 5u + 13v = 0

∣∣∣∣∣∣
50.

∣∣∣∣∣∣
y + z + 4u + 3v = 2

2z − 2u + 4v = 4
y + 3z + 5u + 7v = 0

∣∣∣∣∣∣
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3.4 Basis, Nullity and Rank

Studied here are the basic concepts of basis, nullity and rank of a system
of linear algebraic equations.

Basis

Consider the homogeneous system

x+ 2y + 3z = 0,
0 = 0,
0 = 0.

It is a reduced echelon system with standard general solution

x = −2t1 − 3t2,
y = t1,
z = t2.

The formal partial derivatives ∂t1 , ∂t2 of the general solution are solutions
of the homogeneous system, because they correspond exactly to setting
t1 = 1, t2 = 0 and t1 = 0, t2 = 1, respectively:

x = −2, y = 1, z = 0, (partial on t1)
x = −3, y = 0, z = 1. (partial on t2)

The terminology basis abbreviates the k homogeneous solutions ob-
tained from the standard general solution by taking partial derivatives
∂t1 , . . . , ∂tk .

A general solution of the homogeneous system can be re-constructed
from a basis, which motivates the terminology. In this sense, a basis is
an abbreviation for general solution.

Non-uniqueness of a Basis. A given linear system has a number
of different standard general solutions, obtained, for example, by re-
ordering the variable list. Therefore, a basis is not unique. Language
like the basis is tragically incorrect.

To illustrate non-uniqueness of bases, consider the homogeneous 3 × 3
system of equations

x+ y + z = 0,
0 = 0,
0 = 0.

(19)

Equations (19) have two standard general solutions x = −t1− t2, y = t1,
z = t2 and x = t3, y = −t3 − t4, z = t4, corresponding to two different
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orderings of the variable list x, y, z. Then two different bases for the
system are given by the partial derivative relations

∂t1 , ∂t2 :

{
x = −1, y = 1, z = 0,
x = −1, y = 0, z = 1,

(20)

∂t3 , ∂t4 :

{
x = 1, y = −1, z = 0,
x = 0, y = −1, z = 1.

(21)

In general, there are infinitely many bases possible for a given linear
system.

Nullspace

The term nullspace refers to the set of all solutions of the homogeneous
system. The prefix null refers to the right side of the homogeneous
system, which is zero, or null, for each equation. The main reason for
introducing the term nullspace is to consider simultaneously all possible
general solutions of the linear system, without regard to their represen-
tation in terms of invented symbols or the algorithm used to find the
formulas.

The term nullspace uses the word space, which has meaning taken from
the phrases storage space and parking space — it has no intended
geometrical meaning whatsoever.

How to Find the Nullspace. A classical method for describing the
nullspace is to form a frame sequence for the homogeneous system which
ends with last frame a reduced echelon system. The last frame algorithm
applies to write the general solution in terms of invented symbols t1,
t2, . . . . The meaning is that assignment of values to the symbols t1,
t2, . . . lists all possible solutions of the system. The general solution
formula obtained by this method is one possible set of scalar equations
that completely describes all solutions of the homogeneous equation,
hence it describes completely the nullspace.

Basis for the Nullspace. A basis for the nullspace is found by
taking partial derivatives ∂t1 , ∂t2 , . . . on the last frame algorithm general
solution, giving k solutions. The general solution is reconstructed from
these basis elements by multiplying them by the symbols t1, t2, . . . and
adding. The nullspace is the same regardless of the choice of basis,
because it is just the set of solutions of the homogeneous equation.
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An Illustration. Consider the system

x+ y + 2z = 0,
0 = 0,
0 = 0.

(22)

The nullspace is the set of all solutions of x+ y+ 2z = 0. Geometrically,
it is the plane x+ y+ 2z = 0 through x = y = z = 0 with normal vector
~ı+ ~+ 2~k. The nullspace is represented by the general solution formula

x = −t1 − 2t2,
y = t1,
z = t2.

There are infinitely many representations possible, e.g., replace t1 by kt1
where k is any nonzero integer.

The nullspace can be described succinctly as the plane generated by the
basis

x = −1, y = 1, z = 0, x = −2, y = 0, z = 1.

Calculus courses represent the basis elements as vectors a = −~ı + ~,
b = −2~ı + ~k, which are two vectors in the plane x + y + 2z = 0. Their
cross product a× b is normal to the plane.

Rank, Nullity and Dimension

The rank of a system of equations is defined to be the number of lead
variables in an equivalent reduced echelon system. The nullity of a
system of equations is the number of free variables appearing in an
equivalent reduced echelon system.

In practical terms, the lead variables and free variables can be determined
from the last frame. Sometimes, an intermediate frame has enough in-
formation to predict the form of the last frame, and then the lead and
free variables can be predicted early.

The nullity equals the number k of partial derivatives taken to compute
the elements in a basis for the nullspace. For instance, the nullity of
system (19) equals 2 because there are two free variables, which were
assigned the invented symbols t1, t2.

In literature, nullity is referred to as the dimension of the nullspace.
The term dimension is a synonym for the number of free variables,
which is exactly the number of parameters in a standard general
solution for the linear system, or equivalently, the number of partial
derivatives taken to compute a basis.

The fundamental relations between rank, nullity and dimension are
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rank = number of lead variables,
nullity = number of free variables,

dimension = nullity,
rank + nullity = number of variables.

The Three Possibilities, Rank and Nullity

We intend to justify the table below, which summarizes the three possi-
bilities for a linear system, in terms of free variables, rank and nullity.

Table 7. Three possibilities for a linear system.

No solution Signal equation 0 = 1
Infinitely many solutions One or more free variables nullity ≥ 1
Unique solution Zero free variables nullity = 0

No Solution. There is no solution to a system of equations exactly
when a signal equation 0 = 1 occurs during the application of swap,
multiply and combination rules. We report the system inconsistent
and announce no solution.

Infinitely Many Solutions. The situation of infinitely many so-
lutions occurs when there is at least one free variable to which an
invented symbol, say t1, is assigned. Since this symbol takes the values
−∞ < t1 < ∞, there are an infinity of solutions. The condition rank
less than n can replace a reference to the number of free variables.

Unique Solution. There is a unique solution to a system of equa-
tions exactly when zero free variables are present. This is identical
to requiring that the number n of variables equal the number of lead
variables, or rank = n.

Existence of Infinitely Many Solutions

Homogeneous systems are always consistent, therefore if the number of
variables exceeds the number of equations, then there is always one free
variable. This proves the following basic result of linear algebra.

Theorem 5 (Infinitely Many Solutions)
A system of m× n linear homogeneous equations (6) with fewer equations
than unknowns (m < n) has at least one free variable, hence an infinite
number of solutions. Therefore, such a system always has the zero solution
and also a nonzero solution.
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Non-homogeneous systems can be similarly analyzed by considering con-
ditions under which there will be at least one free variable.

Theorem 6 (Missing Variable and Infinitely Many Solutions)
A consistent system of m × n linear equations with one unknown missing
has at least one free variable, hence an infinite number of solutions.

Theorem 7 (Non-zero Nullity and Infinitely Many Solutions)
A consistent system of m × n linear equations with nonzero nullity has at
least one free variable, hence an infinite number of solutions.

Examples and Methods

11 Example (Three Possibilities with Symbol k) Determine all values of the
symbol k such that the system below has one of the Three Possibilities (1)
No solution, (2) Infinitely many solutions or (3) A unique solution. Display
all solutions found.

x + ky = 2,
(2− k)x + y = 3.

Solution: The Three Possibilities are detected by (1) A signal equation “0 =
1,” (2) One or more free variables, (3) Zero free variables.

The solution of this problem involves construction of perhaps three frame se-
quences, the last frame of each resulting in one of the three possibilities (1),
(2), (3).

x + ky = 2,
(2− k)x + y = 3.

Frame 1.

Original system.

x + ky = 2,
[1 + k(k − 2)]y = 2(k − 2) + 3.

Frame 2.

combo(1,2,k-2)

x + ky = 2,
(k − 1)2y = 2k − 1.

Frame 3.

Simplify.

The three expected frame sequences share these initial frames. At this point,
we identify the values of k that split off into the three possibilities.

There will be a signal equation if the second equation of Frame 3 has no vari-
ables, but the resulting equation is not “0 = 0.” This happens exactly for k = 1.
The resulting signal equation is “0 = 1.” We conclude that one of the three
frame sequences terminates with the no solution case. This frame sequence
corresponds to k = 1.

Otherwise, k 6= 1. For these values of k, there are zero free variables, which
implies a unique solution. A by-product of the analysis is that the infinitely
many solutions case never occurs!
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The conclusion: The initially expected three frame sequences reduce to two
frame sequences. One sequence gives no solution and the other sequence gives
a unique solution.

The three answers:

(1) No solution occurs only for k = 1.

(2) Infinitely many solutions occurs for no value of k.

(3) A unique solution occurs for k 6= 1.

x = 2− k(2k − 1)

(k − 1)2
,

y =
(2k − 1)

(k − 1)2
.

12 Example (Symbols and the Three Possibilities) Determine all values of
the symbols a, b such that the system below has (1) No solution, (2) In-
finitely many solutions or (3) A unique solution. Display all solutions found.

x + ay + bz = 2,
y + z = 3,
by + z = 3b.

Solution: The plan is to make three frame sequences, using swap, multiply
and combination rules. Each sequence has last frame which is one of the three
possibilities, the detection facilitated by (1) A signal equation “0 = 1,” (2) At
least one free variable, (3) Zero free variables. The initial three frames of each
of the expected frame sequences is constructed as follows.

x + ay + bz = 2,
y + z = 3,
by + z = 3b.

Frame 1
Original system.

x + ay + bz = 2,
y + z = 3,
0 + (1− b)z = 0.

Frame 2.

combo(2,3,-b)

x + 0 + (b− a)z = 2− 3a,
y + z = 3,
0 + (1− b)z = 0.

Frame 3. combo(2,1,-a)

Triangular form.
Lead variables determined.

The three frame sequences expected will share these initial frames. Frame 3
shows that there are either 2 lead variables or 3 lead variables, accordingly as
the coefficient of z in the third equation is nonzero or zero. There will never be
a signal equation. Consequently, the three expected frame sequences reduce to
just two. We complete these two sequences to give the answer:

(1) There are no values of a, b that result in no solution.



3.4 Basis, Nullity and Rank 201

(2) If 1 − b = 0, then there are two lead variables and hence an
infinite number of solutions, given by the general solution x = 2− 3a− (b− a)t1,

y = 3− t1,
z = t1.

(3) If 1 − b 6= 0, then there are three lead variables and there is a
unique solution, given by x = 2− 3a,

y = 3,
z = 0.

Exercises 3.4

Nullspace. Solve using variable order
y, z, u, v. Report the values of the
nullity and rank in the equation nul-
lity+rank=4.

1.

∣∣∣∣∣∣
y + z + 4u + 8v = 0

2z − u + v = 0
2y − u + 5v = 0

∣∣∣∣∣∣
2.

∣∣∣∣∣∣
y + z + 4u + 8v = 0

2z − 2u + 2v = 0
y + 3z + 2u + 5v = 0

∣∣∣∣∣∣
3.

∣∣∣∣∣∣
y + z + 4u + 8v = 0

2z − 2u + 4v = 0
y + 3z + 2u + 6v = 0

∣∣∣∣∣∣
4.

∣∣∣∣∣∣
y + 3z + 4u + 8v = 0

2z − 2u + 4v = 0
y + 3z + 2u + 6v = 0

∣∣∣∣∣∣
5.

∣∣∣∣ y + 3z + 4u + 8v = 0
2z − 2u + 4v = 0

∣∣∣∣
6.

∣∣∣∣ y + z + 4u + 9v = 0
2z − 2u + 4v = 0

∣∣∣∣
7.

∣∣∣∣ y + z + 4u + 9v = 0
3y + 4z + 2u + 5v = 0

∣∣∣∣
8.

∣∣∣∣ y + 2z + 4u + 9v = 0
y + 8z + 2u + 7v = 0

∣∣∣∣
9.

∣∣∣∣ y + z + 4u + 11v = 0
2z − 2u + 4v = 0

∣∣∣∣

10.

∣∣∣∣ y + z + 5u + 11v = 0
2z − 2u + 6v = 0

∣∣∣∣
Dimension of the nullspace. In the
homogeneous systems, assume vari-
able order x, y, z, u, v.

(a) Display an equivalent set of
equations in reduced echelon
form.

(b) Solve for the general solution
and check the answer.

(c) Report the dimension of the
nullspace.

11.

∣∣∣∣∣∣
x + y + z + 4u + 8v = 0
−x + 2z − 2u + 2v = 0

y − z + 6u + 6v = 0

∣∣∣∣∣∣
12.

∣∣∣∣∣∣
x + y + z + 4u + 8v = 0

− 2z − u + v = 0
2y − u + 5v = 0

∣∣∣∣∣∣
13.

∣∣∣∣∣∣
y + z + 4u + 8v = 0

x + 2z − 2u + 4v = 0
2x + y + 3z + 2u + 6v = 0

∣∣∣∣∣∣
14.

∣∣∣∣∣∣
x + y + 3z + 4u + 8v = 0

2x + 2z − 2u + 4v = 0
x − y + 3z + 2u + 12v = 0

∣∣∣∣∣∣
15.

∣∣∣∣∣∣
y + 3z + 4u + 20v = 0

+ 2z − 2u + 10v = 0
− y + 3z + 2u + 30v = 0

∣∣∣∣∣∣
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16.

∣∣∣∣∣∣
y + 4u + 20v = 0
− 2u + 10v = 0

− y + 2u + 30v = 0

∣∣∣∣∣∣
17.

∣∣∣∣∣∣
x + y + z + 4u = 0

− 2z − u = 0
2y − u+ = 0

∣∣∣∣∣∣
18.

∣∣∣∣∣∣
+ z + 12u + 8v = 0

x + 2z − 6u + 4v = 0
2x + 3z + 6u + 6v = 0

∣∣∣∣∣∣
19.

∣∣∣∣∣∣
y + z + 4u = 0

2z − 2u = 0
y − z + 6u = 0

∣∣∣∣∣∣
20.

∣∣∣∣∣∣
x + z + 8v = 0
− 2z + v = 0

5v = 0

∣∣∣∣∣∣
Three possibilities with symbols.
Assume variables x, y, z. Determine
the values of the constants (a, b, c, k,
etc) such that the system has (1) No
solution, (2) A unique solution or (3)
Infinitely many solutions.

21.

∣∣∣∣ x + ky = 0
x + 2ky = 0

∣∣∣∣
22.

∣∣∣∣ kx + ky = 0
x + 2ky = 0

∣∣∣∣
23.

∣∣∣∣ ax + by = 0
x + 2by = 0

∣∣∣∣
24.

∣∣∣∣ bx + ay = 0
x + 2y = 0

∣∣∣∣
25.

∣∣∣∣ bx + ay = c
x + 2y = b− c

∣∣∣∣
26.

∣∣∣∣ bx + ay = 2c
x + 2y = c+ a

∣∣∣∣
27.

∣∣∣∣∣∣
bx + ay + z = 0

2bx + ay + 2z = 0
x + 2y + 2z = c

∣∣∣∣∣∣
28.

∣∣∣∣∣∣
bx + ay + z = 0

3bx + 2ay + 2z = 2c,
x + 2y + 2z = c

∣∣∣∣∣∣

29.

∣∣∣∣∣∣
3x + ay + z = b

2bx + ay + 2z = 0
x + 2y + 2z = c

∣∣∣∣∣∣
30.

∣∣∣∣∣∣
x + ay + z = 2b

3bx + 2ay + 2z = 2c
x + 2y + 2z = c

∣∣∣∣∣∣
Three Possibilities. The following
questions can be answered by using the
quantitative expression of the three
possibilities in terms of lead and free
variables, rank and nullity.

31. Does there exist a homogeneous
3 × 2 system with a unique solu-
tion? Either give an example or
else prove that no such system ex-
ists.

32. Does there exist a homogeneous
2 × 3 system with a unique solu-
tion? Either give an example or
else prove that no such system ex-
ists.

33. In a homogeneous 10×10 system,
two equations are identical. Prove
that the system has a nonzero so-
lution.

34. In a homogeneous 5 × 5 system,
each equation has a leading vari-
able. Prove that the system has
only the zero solution.

35. Suppose given two homogeneous
systems A and B, with A having a
unique solution and B having in-
finitely many solutions. Explain
why B cannot be obtained from
A by a sequence of swap, mul-
tiply and combination operations
on the equations.

36. A 2 × 3 system cannot have a
unique solution. Cite a theorem
or explain why.

37. If a 3×3 homogeneous system con-
tains no variables, then what is
the general solution?
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38. If a 3 × 3 non-homogeneous solu-
tion has a unique solution, then
what is the nullity of the homoge-
neous system?

39. A 7 × 7 homogeneous system is
missing two variables. What is
the maximum rank of the sys-
tem? Give examples for all pos-
sible ranks.

40. Suppose an n × n system of
equations (homogeneous or non-
homogeneous) has two solutions.
Prove that it has infinitely many
solutions.

41. What is the nullity and rank of
an n × n system of homogeneous
equations if the system has a
unique solution?

42. What is the nullity and rank of an
n×n system of non-homogeneous
equations if the system has a
unique solution?

43. Prove or disprove (by example):
A 4 × 3 nonhomogeneous system
cannot have a unique solution.

44. Prove or disprove (by example):
A 4 × 3 homogeneous system al-
ways has infinitely many solu-
tions.
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3.5 Answer Check, Proofs and Details

Answer Check Algorithm

A given general solution (14) can be tested for validity manually as in
Example 6, page 188. It is possible to devise a symbol-free answer
check. The technique checks a general solution (14) by testing constant
trial solutions in systems (5) and (6).

Step 1. Set all invented symbols t1, . . . , tk to zero in general solution
(14) to obtain the nonhomogeneous trial solution x1 = d1,
x2 = d2, . . . , xn = dn. Test it by direct substitution into the
nonhomogeneous system (5).

Step 2. Apply partial derivatives ∂t1 , ∂t2 , . . . , ∂tk to the general so-
lution (14), obtaining k homogeneous trial solutions. Verify
that the trial solutions satisfy the homogeneous system (6),
by direct substitution.

The trial solutions in step 2 are obtained from the general solution
(14) by setting one symbol equal to 1 and the others zero, followed by
subtracting the nonhomogeneous trial solution of step 1. The partial
derivative idea computes the same set of trial solutions, and it is easier
to remember.

Theorem 8 (Answer Check)
The answer check algorithm described in steps 1–2 verifies the general so-
lution (14) for all values of the symbols. Please observe that this answer
check cannot test for skipped solutions.

Proof of Theorem 8. To simplify notation and quickly communicate the
ideas, a proof will be given for a 2×2 system. A proof for the m×n case can be
constructed by the reader, using the same ideas. Consider the nonhomogeneous
and homogeneous systems

ax1 + by1 = b1,
cx1 + dy1 = b2,

(23)

ax2 + by2 = 0,
cx2 + dy2 = 0.

(24)

Assume (x1, y1) is a solution of (23) and (x2, y2) is a solution of (24). Add
corresponding equations in (23) and (24). Then collecting terms gives

a(x1 + x2) + b(y1 + y2) = b1,
c(x1 + x2) + d(y1 + y2) = b2.

(25)

This proves that (x1 +x2, y1 + y2) is a solution of the nonhomogeneous system.
Similarly, a scalar multiple (kx2, ky2) of a solution (x2, y2) of system (24) is
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also a solution of (24) and the sum of two solutions of (24) is again a solution
of (24).

Given each solution in step 2 satisfies (24), then multiplying the first solution
by t1 and the second solution by t2 and adding gives a solution (x3, y3) of (24).
After adding (x3, y3) to the solution (x1, y1) of step 1, a solution of (23) is
obtained, proving that the full parametric solution containing the symbols t1,
t2 is a solution of (23). The proof for the 2× 2 case is complete.

Failure of Answer Checks

An answer check only tests the given formulas against the equations.
If too few parameters are present, then the answer check can be alge-
braically correct but the general solution check fails, because not all
solutions can be obtained by specialization of the parameter values.

For example, x = 1 − t1, y = t1, z = 0 is a one-parameter solution for
x + y + z = 1, as verified by an answer check. But the general solution
x = 1 − t1 − t2, y = t1, z = t2 has two parameters t1, t2. Generally,
an answer check decides if the formula supplied works in the equation.
It does not decide if the given formula represents all solutions. This
trouble, in which an error leads to a smaller value for the nullity of the
system, is due largely to human error and not machine error.

Linear algebra workbenches have another kind of flaw: they may com-
pute the nullity for a system incorrectly as an integer larger than the
correct nullity. A parametric solution with nullity k might be obtained,
checked to work in the original equations, then cross-checked by com-
puting the nullity k independently. However, the computed nullity k
could be greater than the actual nullity of the system. Here is a simple
example, where ε is a very small positive number:

x + y = 0,
εy = ε.

(26)

On a limited precision machine, system (26) has internal machine repre-
sentation3

x + y = 0,
0 = 0.

(27)

Representation (27) occurs because the coefficient ε is smaller than the
smallest positive floating point number of the machine, hence it becomes
zero during translation. System (26) has nullity zero and system (27)
has nullity one. The parametric solution for system (27) is x = −t1,
y = t1, with basis selected by setting t1 = 1. The basis passes the answer
check on system (26), because ε times 1 evaluates to ε. A second check

3For example, if the machine allows only 2-digit exponents (1099 is the maximum),
then ε = 10−101 translates to zero.
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for the nullity of system (27) gives 1, which supports the correctness
of the parametric solution, but unfortunately there are not infinitely
many solutions: for system (26) the correct answer is the unique solution
x = −1, y = 1.

Computer algebra systems (CAS) are supposed to avoid this kind of
error, because they do not translate input into floating point represen-
tations. All input is supposed to remain in symbolic or in string form.
In short, they don’t change ε to zero. Because of this standard, CAS are
safer systems in which to do linear algebra computations, albeit slower
in execution.

The trouble reported here is not entirely one of input translation. An in-
nocuous combo(1,2,-1) can cause an equation like εy = ε in the middle
of a frame sequence. If floating point hardware is being used, and not
symbolic computation, then the equation can translate to 0 = 0, causing
a false free variable appearance.

Minimal Parametric Solutions

Proof of Theorem 2: The proof of Theorem 2, page 183, will follow from the
lemma and theorem below.

Lemma 1 (Unique Representation) If a set of parametric equations (14) satis-
fies (15), (16) and (17), then each solution of linear system (5) is given by (14) for
exactly one set of parameter values.

Proof: Let a solution of system (5) be given by (14) for two sets of parameters
t1, . . . , tk and t1, . . . , tk. By (17), tj = xij = tj for 1 ≤ j ≤ k, therefore the
parameter values are the same.

Definition 6 (Minimal Parametric Solution)
Given system (5) has a parametric solution x1, . . . , xn satisfying (14), (15), (16),
then among all such parametric solutions there is one which uses the fewest
possible parameters. A parametric solution with fewest parameters is called
minimal. Parametric solutions with more parameters are called redundant.

To illustrate, the plane x+y+z = 1 has a minimal standard parametric solution
x = 1− t1− t2, y = t1, z = t2. A redundant parametric solution of x+y+z = 1
is x = 1− t1 − t2 − 2t3, y = t1 + t3, z = t2 + t3, using three parameters t1, t2,
t3.

Theorem 9 (Minimal Parametric Solutions)
Let linear system (5) have a parametric solution satisfying (14), (15), (16). Then
(14) has the fewest possible parameters if and only if each solution of linear system
(5) is given by (14) for exactly one set of parameter values.

Proof: Suppose first that a general solution (14) is given with the least number
k of parameters, but contrary to the theorem, there are two ways to represent
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some solution, with corresponding parameters r1, . . . , rk and also s1, . . . , sk.
Subtract the two sets of parametric equations, thus eliminating the symbols x1,
. . . , xn, to obtain:

c11(r1 − s1) + · · ·+ c1k(rk − sk) = 0,
...

cn1(r1 − s1) + · · ·+ cnk(rk − sk) = 0.

Relabel the variables and constants so that r1 − s1 6= 0, possible since the two
sets of parameters are supposed to be different. Divide the preceding equations
by r1 − s1 and solve for the constants c11, . . . , cn1. This results in equations

c11 = c12w2 + · · ·+ c1kwk,
...

cn1 = cn2w2 + · · ·+ cnkwk,

where wj = − rj−sj
r1−s1 , 2 ≤ j ≤ k. Insert these relations into (14), effectively

eliminating the symbols c11, . . . , cn1, to obtain

x1 = d1 + c12(t2 + w2t1) + · · ·+ c1k(tk + wkt1),
x2 = d2 + c22(t2 + w2t1) + · · ·+ c2k(tk + wkt1),

...
xn = dn + cn2(t2 + w2t1) + · · ·+ cnk(tk + wkt1).

Let t1 = 0. The remaining parameters t2, . . . , tk are fewer parameters that
describe all solutions of the system, a contradiction to the definition of k. This
completes the proof of the first half of the theorem.

To prove the second half of the theorem, assume that a parametric solution (14)
is given which represents all possible solutions of the system and in addition
each solution is represented by exactly one set of parameter values. It will be
established that the number k in (14) is the least possible parameter count.

Suppose not. Then there is a second parametric solution

x1 = e1 + b11v1 + · · ·+ b1`v`,
...

xn = en + bn1v1 + · · ·+ bn`v`,

(28)

where ` < k and v1, . . . , v` are the parameters. It is assumed that (28) repre-
sents all solutions of the linear system.

We shall prove that the solutions for zero parameters in (14) and (28) can be
taken to be the same, that is, another parametric solution is given by

x1 = d1 + b11s1 + · · ·+ b1`s`,
...

xn = dn + bn1s1 + · · ·+ bn`s`.

(29)

The idea of the proof is to substitute x1 = d1, . . . , xn = dn into (28) for
parameters r1, . . . , rn. Then solve for e1, . . . , en and replace back into (28) to
obtain

x1 = d1 + b11(v1 − r1) + · · ·+ b1`(v` − r`),
...

xn = dn + bn1(v1 − r1) + · · ·+ bn`(v` − r`).
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Replacing parameters sj = vj − rj gives (29).

From (14) it is known that x1 = d1 + c11, . . . , xn = dn + cn1 is a solution. By
(29), there are constants r1, . . . , r` such that (we cancel d1, . . . , dn from both
sides)

c11 = b11r1 + · · ·+ b1`r`,
...

cn1 = bn1r1 + · · ·+ bn`r`.

If r1 through r` are all zero, then the solution just referenced equals d1, . . . ,
dn, hence (14) has a solution that can be represented with parameters all zero
or with t1 = 1 and all other parameters zero, a contradiction. Therefore, some
ri 6= 0 and we can assume by renumbering that r1 6= 0. Return now to the last
system of equations and divide by r1 in order to solve for the constants b11,
. . . , bn1. Substitute the answers back into (29) in order to obtain parametric
equations

x1 = d1 + c11w1 + b12w2 + · · ·+ b1`w`,
...

xn = dn + cn1w1 + bn2w2 + · · ·+ bn`w`,

where w1 = s1, wj = sj − rj/r1. Given s1, . . . , s` are parameters, then so are
w1, . . . , w`.

This process can be repeated for the solution x1 = d1 + c12, . . . , xn = dn + cn2.
We assert that for some index j, 2 ≤ j ≤ `, constants bij , . . . , bnj in the
previous display can be isolated, and the process of replacing symbols b by c
continued. If not, then w2 = · · · = w` = 0. Then solution x1, . . . , xn has two
distinct representations in (14), first with t2 = 1 and all other tj = 0, then
with t1 = w1 and all other tj = 0. A contradiction results, which proves the
assertion. After ` repetitions of this replacement process, we find a parametric
solution

x1 = d1 + c11u1 + c12u2 + · · ·+ c1`u`,
...

xn = dn + cn1u1 + cn2u2 + · · ·+ cn`u`,

in some set of parameters u1, . . . , u`.

However, ` < k, so at least the solution x1 = d1+c1k, . . . , xn = dn+cnk remains
unused by the process. Insert this solution into the previous display, valid for
some parameters u1, . . . , u`. The relation says that the solution x1 = d1,
. . . , xn = dn in (14) has two distinct sets of parameters, namely t1 = u1, . . . ,
t` = u`, tk = −1, all others zero, and also all parameters zero, a contradiction.
This completes the proof of the theorem.

Exercises 3.5

Parametric solutions.

1. Is there a 2× 3 homogeneous sys-
tem with general solution having
2 parameters t1, t2?

2. Is there a 3× 3 homogeneous sys-

tem with general solution having
3 parameters t1, t2, t3?

3. Give an example of a 4× 3 homo-
geneous system with general solu-
tion having zero parameters, that
is, x = y = z = 0 is the only solu-



3.5 Answer Check, Proofs and Details 209

tion.

4. Give an example of a 4× 3 homo-
geneous system with general solu-
tion having exactly one parameter
t1.

5. Give an example of a 4× 3 homo-
geneous system with general solu-
tion having exactly two parame-
ters t1, t2.

6. Give an example of a 4× 3 homo-
geneous system with general solu-
tion having exactly three parame-
ters t1, t2, t3.

7. Consider an n × n homogeneous
system with parametric solution
having parameters t1 to tk. What
are the possible values of k?

8. Consider an n × m homogeneous
system with parametric solution
having parameters t1 to tk. What
are the possible values of k?

Answer Checks. Assume variable list
x, y, z and parameter t1. (a) Display
the answer check details. (b) Find the
rank. (c) Report whether the given so-
lution is a general solution.

9.

∣∣∣∣ y = 1
2z = 2

∣∣∣∣
x = t1, y = 1, z = 1.

10.

∣∣∣∣ x = 1
2z = 2

∣∣∣∣
x = 1, y = t1, z = 1.

11.

∣∣∣∣∣∣
y + z = 1

2x + 2z = 2
x + z = 1

∣∣∣∣∣∣
x = 0, y = 0, z = 1.

12.

∣∣∣∣∣∣
2x + y + z = 1
x + 2z = 2
x + y − z = −1

∣∣∣∣∣∣
x = 2, y = −3, z = 0.

13.

∣∣∣∣∣∣
x + y + z = 1

2x + 2z = 2
x + z = 1

∣∣∣∣∣∣
x = 1− t1, y = 0, z = t1.

14.

∣∣∣∣∣∣
x + y + z = 1

2x + 2z = 2
3x + y + 3z = 3

∣∣∣∣∣∣
x = 1− t1, y = 0, z = t1.

Failure of Answer Checks. Find the
unique solution for ε > 0. Discuss how
a machine might translate the system
to obtain infinitely many solutions.

15. x+ εy = 1, x− εy = 1

16. x+ y = 1, x+ (1 + ε)y = 1 + ε

17. x+ εy = 10ε, x− εy = 10ε

18. x+y = 1+ε, x+(1+ε)y = 1+11ε

Minimal Parametric Solutions. For
each given system, determine if the ex-
pression is a minimal general solution.

19.

∣∣∣∣∣∣
y + z + 4u + 8v = 0

2z − u + v = 0
2y − u + 5v = 0

∣∣∣∣∣∣
y = −3t1, z = −t1,
u = −t1, v = t1.

20.

∣∣∣∣∣∣
y + z + 4u + 8v = 0

2z − 2u + 2v = 0
y − z + 6u + 6v = 0

∣∣∣∣∣∣
y = −5t1 − 7t2, z = t1 − t2,
u = t1, v = t2.

21.

∣∣∣∣∣∣
y + z + 4u + 8v = 0

2z − 2u + 4v = 0
y + 3z + 2u + 6v = 0

∣∣∣∣∣∣
y = −5t1 + 5t2, z = t1 − t2,
u = t1 − t2, v = 0.

22.

∣∣∣∣∣∣
y + 3z + 4u + 8v = 0

2z − 2u + 4v = 0
y + 3z + 2u + 12v = 0

∣∣∣∣∣∣
y = 5t1 + 4t2, z = −3t1 − 6t2,
u = −t1 − 2t2, v = t1 + 2t2.


