Systems of Differential Equations The Eigenanalysis Method

- First Order 2×2 Systems $\mathrm{x}^{\prime}=\boldsymbol{A} \mathbf{x}$
- First Order 3×3 Systems $\mathrm{x}^{\prime}=A \mathbf{x}$
- Second Order 3×3 Systems $\mathrm{x}^{\prime \prime}=A \mathrm{x}$
- Vector-Matrix Form of the Solution of $\mathrm{x}^{\prime}=\boldsymbol{A x}$
- Four Methods for Solving a System $\mathrm{x}^{\prime}=\boldsymbol{A x}$

The Eigenanalysis Method for First Order 2×2 Systems
Suppose that \boldsymbol{A} is 2×2 real and has eigenpairs

$$
\left(\lambda_{1}, \mathbf{v}_{1}\right), \quad\left(\lambda_{2}, \mathbf{v}_{2}\right)
$$

with $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}$ independent. The eigenvalues $\boldsymbol{\lambda}_{1}, \boldsymbol{\lambda}_{2}$ can be both real. Also, they can be a complex conjugate pair $\boldsymbol{\lambda}_{1}=\bar{\lambda}_{2}=a+i b$ with $b>0$.
Theorem 1 (Eigenanalysis Method)
The general solution of $\mathrm{x}^{\prime}=\boldsymbol{A x}$ is

$$
\mathbf{x}(t)=c_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{v}_{2}
$$

Solving 2×2 Systems $\mathrm{x}^{\prime}=A \mathrm{x}$ with Complex Eigenvalues

If the eigenvalues are complex conjugates, then the real part $\mathbf{w}_{\mathbf{1}}$ and the imaginary part $\mathbf{w}_{\mathbf{2}}$ of the solution $\boldsymbol{e}^{\boldsymbol{\lambda}_{1} t} \mathbf{v}_{\mathbf{1}}$ are independent solutions of the differential equation. Then the general solution in real form is given by the relation

$$
\mathrm{x}(t)=c_{1} \mathrm{w}_{1}(t)+c_{2} \mathrm{w}_{2}(t)
$$

The Eigenanalysis Method for First Order 3×3 Systems

Suppose that \boldsymbol{A} is $\mathbf{3} \times \mathbf{3}$ real and has eigenpairs

$$
\left(\boldsymbol{\lambda}_{1}, \mathbf{v}_{1}\right), \quad\left(\boldsymbol{\lambda}_{2}, \mathbf{v}_{2}\right), \quad\left(\boldsymbol{\lambda}_{3}, \mathbf{v}_{3}\right)
$$

with $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}$ independent. The eigenvalues $\boldsymbol{\lambda}_{\mathbf{1}}, \boldsymbol{\lambda}_{\mathbf{2}}, \boldsymbol{\lambda}_{\mathbf{3}}$ can be all real. Also, there can be one real eigenvalue $\boldsymbol{\lambda}_{3}$ and a complex conjugate pair of eigenvalues $\boldsymbol{\lambda}_{1}=\overline{\boldsymbol{\lambda}}_{2}=a+\boldsymbol{i b}$ with $\boldsymbol{b}>0$.

Theorem 2 (Eigenanalysis Method)

The general solution of $\mathrm{x}^{\prime}=A \mathrm{x}$ with 3×3 real A can be written as

$$
\mathrm{x}(t)=c_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{v}_{2}+c_{3} e^{\lambda_{3} t} \mathbf{v}_{3}
$$

Solving 3×3 Systems $\mathrm{x}^{\prime}=A \mathrm{x}$ with Complex Eigenvalues

If there are complex eigenvalues $\boldsymbol{\lambda}_{\mathbf{1}}=\overline{\boldsymbol{\lambda}}_{\mathbf{2}}$, then the real general solution is expressed in terms of independent solutions

$$
\mathbf{w}_{1}=\operatorname{Re}\left(e^{\lambda_{1} t} \mathbf{v}_{1}\right), \mathbf{w}_{2}=\operatorname{Im}\left(e^{\lambda_{1} t} \mathbf{v}_{1}\right)
$$

as the linear combination

$$
\mathrm{x}(t)=c_{1} \mathbf{w}_{1}(t)+c_{2} \mathbf{w}_{2}(t)+c_{3} e^{\lambda_{3} t} \mathbf{v}_{3}
$$

The Eigenanalysis Method for Second Order Systems

Theorem 3 (Second Order Systems)

Let A be real and 3×3 with three negative eigenvalues $\lambda_{1}=-\omega_{1}^{2}, \lambda_{2}=-\omega_{2}^{2}$, $\lambda_{3}=-\omega_{3}^{2}$. Let the eigenpairs of \boldsymbol{A} be listed as

$$
\left(\lambda_{1}, \mathbf{v}_{1}\right),\left(\lambda_{2}, \mathbf{v}_{2}\right),\left(\lambda_{3}, \mathbf{v}_{3}\right)
$$

Then the general solution of the second order system $\mathrm{x}^{\prime \prime}(t)=\boldsymbol{A x}(t)$ is

$$
\begin{aligned}
\mathrm{x}(t)= & \left(a_{1} \cos \omega_{1} t+b_{1} \frac{\sin \omega_{1} t}{\omega_{1}}\right) \mathrm{v}_{1} \\
& +\left(a_{2} \cos \omega_{2} t+b_{2} \frac{\sin \omega_{2} t}{\omega_{2}}\right) \mathrm{v}_{2} \\
& +\left(a_{3} \cos \omega_{3} t+b_{3} \frac{\sin \omega_{3} t}{\omega_{3}}\right) \mathrm{v}_{3}
\end{aligned}
$$

Vector-Matrix Form of the Solution of $\mathrm{x}^{\prime}=A \mathrm{x}$

The solution of $\mathrm{x}^{\prime}=A \mathrm{x}$ in the $\mathbf{3 \times 3}$ case is written in vector-matrix form

$$
\mathrm{x}(t)=\operatorname{aug}\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right)\left(\begin{array}{ccc}
e^{\lambda_{1} t} & 0 & 0 \\
0 & e^{\lambda_{2} t} & 0 \\
0 & 0 & e^{\lambda_{3} t}
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)
$$

This formula is normally used when the eigenpairs are real.

Complex Eigenvalues for a 2×2 System

When there is a complex conjugate pair of eigenvalues $\boldsymbol{\lambda}_{1}=\overline{\boldsymbol{\lambda}}_{2}=a+i b, b>0$, then it is possible to extract a real solution \mathbf{x} from the complex formula and report a real solution. The work can be organized more efficiently using the matrix product

$$
\mathrm{x}(t)=e^{a t} \operatorname{aug}\left(\operatorname{Re}\left(\mathrm{v}_{1}\right), \operatorname{Im}\left(\mathrm{v}_{1}\right)\right)\left(\begin{array}{cc}
\cos b t & \sin b t \\
-\sin b t & \cos b t
\end{array}\right)\binom{c_{1}}{c_{2}}
$$

Complex Eigenvalues for a 3×3 System

When there is a complex conjugate pair of eigenvalues $\boldsymbol{\lambda}_{1}=\overline{\boldsymbol{\lambda}}_{2}=\boldsymbol{a}+\boldsymbol{i b}, \boldsymbol{b}>0$, then a real solution x can be extracted from the complex formula to report a real solution. The work is organized using the matrix product

$$
\mathrm{x}(t)=\operatorname{aug}\left(\operatorname{Re}\left(\mathrm{v}_{1}\right), \operatorname{Im}\left(\mathrm{v}_{1}\right), \mathrm{v}_{3}\right)\left(\begin{array}{rrr}
e^{a t} \cos b t & e^{a t} \sin b t & 0 \\
-e^{a t} \sin b t & e^{a t} \cos b t & 0 \\
0 & 0 & e^{\lambda_{3} t}
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)
$$

Four Methods for Solving a 2×2 System $u^{\prime}=A u$

1. First-order method. If \boldsymbol{A} is diagonal, then use growth-decay methods. If \boldsymbol{A} is triangular, then use the linear integrating factor method.
2. Cayley-Hamilton-Ziebur method. If \boldsymbol{A} is not diagonal, and $\boldsymbol{a}_{12} \neq 0$, then $\boldsymbol{u}_{1}(\boldsymbol{t})$ is a linear combination of the atoms constructed from the roots r of $\operatorname{det}(A-r I)=0$. Solution $\boldsymbol{u}_{2}(\boldsymbol{t})$ is found from the system by solving for \boldsymbol{u}_{2} in terms of \boldsymbol{u}_{1} and $\boldsymbol{u}_{1}^{\prime}$.
3. Eigenanalysis method. Assume \boldsymbol{A} has eigenpairs $\left(\boldsymbol{\lambda}_{1}, \mathbf{v}_{\mathbf{1}}\right),\left(\boldsymbol{\lambda}_{\mathbf{2}}, \mathbf{v}_{\mathbf{2}}\right)$ with $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}$ independent. Then $\mathbf{u}(t)=c_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{v}_{2}$.
4. Resolvent method. In Laplace notation, $\mathbf{u}(t)=L^{-1}\left((s I-A)^{-1} \mathbf{u}(0)\right)$. The inverse of $C=s I-A$ is found from the formula $C^{-1}=\operatorname{adj}(C) / \operatorname{det}(C)$. Cramer's Rule can replace the matrix inversion method.

Four Methods for Solving an $\boldsymbol{n} \times \boldsymbol{n}$ System $\mathbf{u}^{\prime}=\boldsymbol{A u}$ \qquad

1. First-order method. If \boldsymbol{A} is diagonal, then use growth-decay methods. If \boldsymbol{A} is triangular, then use the linear integrating factor method.
2. Cayley-Hamilton-Ziebur method. The solution $\mathbf{u}(\boldsymbol{t})$ is a linear combination of the atoms constructed from the roots r of $\operatorname{det}(A-r I)=0$,

$$
\mathbf{u}(t)=\left(\operatorname{atom}_{1}\right) \overrightarrow{\mathrm{d}}_{1}+\cdots+\left(\operatorname{atom}_{n}\right) \overrightarrow{\mathrm{d}}_{n}
$$

To solve for the constant vectors $\overrightarrow{\mathrm{d}}_{j}$, differentiate the formula $\boldsymbol{n}-1$ times, then use $\boldsymbol{A}^{k} \mathbf{u}(t)=\mathbf{u}^{(k+1)}(t)$ and set $\boldsymbol{t}=\mathbf{0}$, to obtain a system for $\overrightarrow{\mathrm{d}}_{1}, \ldots, \overrightarrow{\mathrm{~d}}_{n}$.
3. Eigenanalysis method. Assume \boldsymbol{A} has eigenpairs $\left(\boldsymbol{\lambda}_{1}, \mathbf{v}_{1}\right), \ldots,\left(\boldsymbol{\lambda}_{n}, \mathbf{v}_{n}\right)$ with \mathbf{v}_{1}, \ldots, \mathbf{v}_{n} independent. Then $\mathbf{u}(t)=c_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+\cdots+c_{n} e^{\lambda_{n} t} \mathbf{v}_{n}$.
4. Resolvent method. In Laplace notation, $\mathbf{u}(\boldsymbol{t})=L^{-1}\left((s I-A)^{-1} \mathbf{u}(0)\right)$. The inverse of $C=s I-A$ is found from the formula $C^{-1}=\operatorname{adj}(C) / \operatorname{det}(C)$. Cramer's Rule can replace the matrix inversion method.

