2.9 Exact Equations and Level Curves

A level curve or a conservation law is an equation of the form

$$
U(x, y)=c .
$$

Hikers like to think of U as the altitude at position (x, y) on the map and $U(x, y)=c$ as the curve which represents the easiest walking path, that is, altitude does not change along that route. The altitude is conserved along the route, hence the terminology conservation law.
Other examples of level curves are isobars and isotherms. An isobar is a planar curve where the atmospheric pressure is constant. An isotherm is a planar curve along which the temperature is constant.

Definition 3 (Potential)

The function $U(x, y)$ in a conservation law is called a potential. The dynamical equation is the first order differential equation

$$
\begin{equation*}
M d x+N d y=0, \quad M=U_{x}(x, y), \quad N=U_{y}(x, y) \tag{1}
\end{equation*}
$$

The dynamics or changes in x and y are described by (1). To solve $M d x+N d y=0$ means this: find a conservation law $U(x, y)=c$ so that (1) holds. Formally, (1) is found by implicit differentiation of $U(x, y)=c$; see Technical Details, page 154.

The Potential Problem and Exactness

The potential problem assumes given a dynamical equation $M d x+$ $N d y=0$ and seeks to find a potential $U(x, y)$ from the set of equations

$$
\begin{align*}
U_{x} & =M(x, y), \\
U_{y} & =N(x, y) . \tag{2}
\end{align*}
$$

If some potential $U(x, y)$ satisfies equation (2), then $M d x+N d y=0$ is said to be exact. It is a consequence of the mixed partial equality $U_{x y}=$ $U_{y x}$ that the existence of a solution U implies $M_{y}=N_{x}$. Surprisingly, this condition is also sufficient.

Theorem 5 (Exactness)
Let $M(x, y), N(x, y)$ and their first partials be continuous in a rectangle D. Assume $M_{y}(x, y)=N_{x}(x, y)$ in D and $\left(x_{0}, y_{0}\right)$ is a point of D. Then the equation $M d x+N d y=0$ is exact with potential U given by the formula

$$
\begin{equation*}
U(x, y)=\int_{x_{0}}^{x} M(t, y) d t+\int_{y_{0}}^{y} N\left(x_{0}, s\right) d s . \tag{3}
\end{equation*}
$$

The proof is delayed to page 154 .

The Method of Potentials

Formula (3) has technical problems because it requires two integrations. The integrands have a parameter: they are parametric integrals. Integration effort can be reduced by using the method of potentials for $M d x+N d y=0$, which applies equation (3) with $x_{0}=y_{0}=0$ in order to simplify integrations.

$$
\begin{array}{ll}
\text { Test } M_{y}=N_{x} & \begin{array}{l}
\text { Compute the partials } M_{y} \text { and } N_{x}, \text { then test the } \\
\text { equality } M_{y}=N_{x} . \text { Proceed if equality holds. }
\end{array} \\
\text { Trial Potential } & \begin{array}{l}
\text { Let } U=\int_{0}^{x} M(x, y) d x+\int_{0}^{y} N(0, y) d y . \text { Evaluate } \\
\text { both integrals. }
\end{array} \\
\text { Test } U(x, y) & \begin{array}{l}
\text { Compute } U_{x} \text { and } U_{y} \text {, then test both } U_{x}=M \text { and } \\
\\
U_{y}=N . \text { This step finds integration errors. }
\end{array}
\end{array}
$$

Examples

40 Example (Exactness Test) Test $M d x+N d y=0$ for the existence of a potential U, given $M=2 x y+y^{3}+y$ and $N=x^{2}+3 x y^{2}+x$,

Solution: Theorem 5 implies that $M d x+N d y=0$ has a potential U exactly when $M_{y}=N_{x}$. It suffices to compute the partials and show they are equal.

$$
\begin{aligned}
M_{y} & =\partial_{y}\left(2 x y+y^{3}+y\right) & N_{x} & =\partial_{x}\left(x^{2}+3 x y^{2}+x\right) \\
& =2 x+3 y^{2}+1, & & =2 x+3 y^{2}+1 .
\end{aligned}
$$

41 Example (Conservation Law Test) Test whether $U=x^{2} y+x y^{3}+x y$ is a potential for $M d x+N d y=0$, given $M=2 x y+y^{3}+y, N=x^{2}+3 x y^{2}+x$.

Solution: By definition, it suffices to test the equalities $U_{x}=M$ and $U_{y}=N$.

$$
\begin{aligned}
U_{x} & =\partial_{x}\left(x^{2} y+x y^{3}+x y\right) & U_{y} & =\partial_{y}\left(x^{2} y+x y^{3}+x y\right) \\
& =2 x y+y^{3}+y & & =x^{2}+3 x y^{2}+x \\
& =M, & & =N .
\end{aligned}
$$

42 Example (Method of Potentials) Solve $y^{\prime}=-\frac{2 x y+y^{3}+y}{x^{2}+3 x y^{2}+x}$.
Solution: The implicit solution $x^{2} y+x y^{3}+x y=c$ will be justified.
The equation has the form $M d x+N d y=0$ where $M=2 x y+y^{3}+y$ and $N=$ $x^{2}+3 x y^{2}+x$. It is exact, by Theorem 5, because the partials $M_{y}=2 x+3 y^{2}+1$ and $N_{x}=2 x+3 y^{2}+1$ are equal.
The method of potentials applies to find the potential $U=x^{2} y+x y^{3}+x y$ as follows.

$$
U=\int_{0}^{x} M(x, y) d x+\int_{0}^{y} N(0, y) d y \quad \text { Formula for } U \text {, Theorem } 5 .
$$

$$
\begin{array}{ll}
=\int_{0}^{x}\left(2 x y+y^{3}+y\right) d x+\int_{0}^{y}(0) d y & \\
=x^{2} y+x y^{3}+x y & \\
\text { Insert } M \text { and } N
\end{array}
$$

Observe that $N(x, y)$ simplifies to zero at $x=0$, which reduces the actual work in half. Any choice other than $x_{0}=0$ in Theorem 5 increases the labor.
To test the solution, compute the partials of U, then compare them to M and N; see Example 41.

43 Example (Exact Equation) Solve $\frac{x+y}{(1-x)^{2}} d x+\frac{x}{1-x} d y=0$.
Solution: The implicit solution $\frac{x y+x}{1-x}+\ln |x-1|=c$ will be justified.
Assume given the exactness of the equation $M d x+N d y=0$, where $M=$ $(x+y) /(1-x)^{2}$ and $N=x /(1-x)$. Apply Theorem 5 :

$$
\begin{aligned}
U & =\int_{0}^{x} M(x, y) d x+\int_{0}^{y} N(0, y) d y & & \text { Method of potentials. } \\
& =\int_{0}^{x} \frac{x+y}{(1-x)^{2}} d x+\int_{0}^{y}(0) d y & & \text { Substitute for } M, N \\
& =\int_{0}^{x}\left(\frac{y+1}{(x-1)^{2}}+\frac{1}{x-1}\right) d x & & \text { Partial fractions. } \\
& =\frac{x y+x}{1-x}+\ln |x-1| & & \text { Evaluate integral. }
\end{aligned}
$$

Additional examples, including the context for the preceding example, appear in the next section.

Remarks on the Method of Potentials

Indefinite integrals $\int M(x, y) d x$ and $\int N(0, y) d y$ can be used, provided the two integration answers are zero at $x=0$ and $y=0$, respectively. Swapping the roles of x and y gives $U=\int_{0}^{y} N(x, y) d y+\int_{0}^{x} M(x, 0) d x$, a form which may have easier integrations.
Can the test $M_{y}=N_{x}$ be skipped? True, it is enough to verify that the potential works (the last step). If the last step fails, then the first step must be done to resolve the error.

The equation $y d x+2 x d y=0$ fails $M_{y}=N_{x}$ and the trial potential $U=x y$ fails $U_{x}=M, U_{y}=N$. In the equivalent form $x^{-1} d x+2 y^{-1} d y=$ 0 , the method of potentials does not apply directly, because $(0,0)$ is outside the domain of continuity. Nevertheless, the trial potential $U=$ $\ln x+2 \ln y$ passes the test $U_{x}=M, U_{y}=N$. Such pleasant accidents account for the popularity of the method of potentials.
It is prudent in applications of Theorem 5 to test $x_{0}=y_{0}=0$ in M and N, to detect a discontinuity. If detected, then another vertex x_{0}, y_{0} of the unit square, e.g., $x_{0}=y_{0}=1$, might suffice.

Details and Proofs

Justification of equation (1) uses the calculus chain rule

$$
\frac{d}{d t} U(x(t), y(t))=U_{x}(x(t), y(t)) x^{\prime}(t)+U_{y}(x(t), y(t)) y^{\prime}(t)
$$

and differential notation $d x=x^{\prime}(t) d t, d y=y^{\prime}(t) d t$. To justify (1), let $(x(t), y(t))$ be some parameterization of the level curve, then differentiate on t across the equation $U(x(t), y(t))=c$ and apply the chain rule.

Proof of Theorem 5

Background result. The proof assumes the following identity:

$$
\frac{\partial}{\partial y} \int_{x_{0}}^{x} M(t, y) d t=\int_{x_{0}}^{x} M_{y}(t, y) d t
$$

The identity is obtained by forming the Newton quotient $(G(y+h)-G(y)) / h$ for the derivative of $G(y)=\int_{x_{0}}^{x} M(t, y) d t$ and then taking the limit as h approaches zero. Technically, the limit must be taken inside an integral sign, which for success requires continuity of the partial M_{y}.
Details. It has to be shown that the implicit relation $U(x, y)=c$ with U defined by (3) is a solution of the exact equation $M d x+N d y=0$, that is, the relations $U_{x}=M, U_{y}=N$ hold. The partials are calculated from the background result as follows.

$$
\begin{array}{rlrl}
U_{x}= & \partial_{x} \int_{x_{0}}^{x} M(t, y) d t & & \begin{array}{l}
\text { Use (3), in which the second integral does } \\
\text { not depend on } x .
\end{array} \\
=M(x, y), & & \text { Fundamental theorem of calculus. } \\
U_{y}=\partial_{y} \int_{x_{0}}^{x} M(t, y) d t & & \text { Use (3). } \\
& +\partial_{y} \int_{y_{0}}^{y} N\left(x_{0}, s\right) d s & & \\
=\int_{x_{0}}^{x} M_{y}(t, y) d t+N\left(x_{0}, y\right) & & \text { Apply the background result and the fun- } \\
=\int_{x_{0}}^{x} N_{x}(t, y) d t+N\left(x_{0}, y\right) & \begin{array}{l}
\text { Samental theorem. } \\
=N(x, y)
\end{array} & \text { Substitute } M_{y}=N_{x} .
\end{array}
$$

The verification is complete.
Power Series Proof of Theorem 5 It will be assumed that M and N have power series expansions about $x=y=0$. Let $U_{1}=\int M(x, y) d x$ and $U_{2}=$ $\int N(x, y) d y$ with $U_{1}(0, y)=U_{2}(x, 0)=0$. The series forms of U_{1} and U_{2} will be

$$
\begin{aligned}
& U_{1}=\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} c_{i j} x^{i} y^{j}+\sum_{i=1}^{\infty} a_{i} x^{i}, \\
& U_{2}=\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} d_{i j} x^{i} y^{j}+\sum_{j=1}^{\infty} b_{j} y^{j} .
\end{aligned}
$$

The identities $\partial_{y} \partial_{x} U_{1}=M_{y}=N_{x}=\partial_{x} \partial_{y} U_{2}$ imply that $c_{i j}=d_{i j}$, using term-by-term differentiation. The trial potential is $U=U_{1}+\sum_{j=1}^{\infty} b_{j} y^{j}$ or $U=U_{2}+\sum_{i=1}^{\infty} a_{i} x^{i}$. From these relations it follows that $U_{x}=M$ and $U_{y}=N$. Therefore, $M d x+N d y=0$ is exact with potential U.

A Popular Method. The power series proof justifies this method: the potential U is the sum of $\int M d x$ and the terms from $\int N d y$ which do not appear in $\int M d x$.
Simplifications of the integrand in $\int N(0, y) d y$, due to $x=0$, suggest that $\int N(x, y) d y$ might involve more labor. Examples show that this insight is correct.

Exercises 2.9

Exactness Test. Test the equality $M_{y}=N_{x}$ for the given equation, as written, and report exact when true. Do not try to solve the differential equation. See Example 40, page 152.

1. $(y-x) d x+(y+x) d y=0$
2. $(y+x) d x+(x-y) d y=0$
3. $(y+\sqrt{x y}) d x+(-y) d y=0$
4. $(y+\sqrt{x y}) d x+x y d y=0$
5. $\left(x^{2}+3 y^{2}\right) d x+6 x y d y=0$
6. $\left(y^{2}+3 x^{2}\right) d x+2 x y d y=0$
7. $\left(y^{3}+x^{3}\right) d x+3 x y^{2} d y=0$
8. $\left(y^{3}+x^{3}\right) d x+2 x y^{2} d y=0$
9. $2 x y d x+\left(x^{2}-y^{2}\right) d y=0$
10. $2 x y d x+\left(x^{2}+y^{2}\right) d y=0$

Conservation Law Test. For each given conservation law $U(x, y)=c$, report whether or not it is a solution to $M d x+N d y=0 . \quad$ See Example 41, page 152 .
11. $2 x y d x+\left(x^{2}+3 y^{2}\right) d y=0$, $x^{2} y+y^{3}=c$
12. $2 x y d x+\left(x^{2}-3 y^{2}\right) d y=0$, $x^{2} y-y^{3}=c$
13. $\left(3 x^{2}+3 y^{2}\right) d x+6 x y d y=0$, $x^{3}+3 x y^{2}=c$
14. $\left(x^{2}+3 y^{2}\right) d x+6 x y d y=0$, $x^{3}+3 x y^{2}=c$
15. $(y-2 x) d x+(2 y+x) d y=0$, $x y-x^{2}+y^{2}=c$
16. $(y+2 x) d x+(-2 y+x) d y=0$, $x y+x^{2}-y^{2}=c$

Exactness Theorem. Apply the exactness Theorem 5 and possibly the method of potentials to find an implicit solution $U(x, y)=c$ for the given differential equation. See Examples 42-43, page 152 .
17. $(y-4 x) d x+(4 y+x) d y=0$
18. $(y+4 x) d x+(4 y+x) d y=0$
19. $\left(e^{y}+e^{x}\right) d x+\left(x e^{y}\right) d y=0$
20. $\left(e^{2 y}+e^{x}\right) d x+\left(2 x e^{2 y}\right) d y=0$
21. $\left(1+y e^{x y}\right) d x+\left(2 y+x e^{x y}\right) d y=0$
22. $\left(1+y e^{-x y}\right) d x+\left(x e^{-x y}-4 y\right) d y=0$
23. $(2 x+\arctan y) d x+\frac{x}{1+y^{2}} d y=0$
24. $(2 x+\arctan y) d x+\frac{x+2 y}{1+y^{2}} d y=0$
25. $\frac{2 x^{5}+3 y^{3}}{x^{4} y} d x-\frac{2 y^{3}+x^{5}}{x^{3} y^{2}} d y=0$
26. $\frac{2 x^{4}+y^{2}}{x^{3} y} d x-\frac{2 x^{4}+y^{2}}{2 x^{2} y^{2}} d y=0$
27. $M d x+N d y=0, M=e^{x} \sin y+$ $\tan y, N=e^{x} \cos y+x \sec ^{2} y$
28. $M d x+N d y=0, M=e^{x} \cos y+$ $\tan y, N=-e^{x} \sin y+x \sec ^{2} y$
29. $\left(x^{2}+\ln y\right) d x+\left(y^{3}+x / y\right) d y=0$
30. $\left(x^{3}+\ln y\right) d x+\left(y^{3}+x / y\right) d y=0$

2.10 Special equations

Homogeneous-A Equation

A first order equation of the form $y^{\prime}=F(y / x)$ is called a homogeneous class A equation. . The substitution $u=y / x$ changes it into an equivalent first order separable equation $x u^{\prime}+u=F(u)$. Solutions of $y^{\prime}=F(y / x)$ and $x u^{\prime}+u=F(u)$ are related by the relation $y=x u$.

Homogeneous-C Equation

Let $R(x, y)$ be a rational function constructed from two affine functions:

$$
R(x, y)=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}} .
$$

A first order equation of the form $y^{\prime}=G(R(x, y))$ is called a homogeneous class \mathbf{C} equation. If the system

$$
a_{1} a+b_{1} b=c_{1}, \quad a_{2} a+b_{2} b=c_{2}
$$

has a solution (a, b), then the change of variables $x=X-a, y=Y-b$ effectively eliminates the terms c_{1} and c_{2}. Accordingly, the equation $y^{\prime}=G(R(x, y))$ converts into a homogeneous class A equation

$$
Y^{\prime}=G\left(\frac{a_{1}+b_{1} Y / X}{a_{2}+b_{2} Y / X}\right) .
$$

This equation type was solved in the previous paragraph. Justification follows from $y^{\prime}=Y^{\prime}$ and $R(X-a, Y-b)=\left(a_{1} X+b_{1} Y\right) /\left(a_{2} X+b_{2} Y\right)$.

Bernoulli's Equation

The equation $y^{\prime}+p(x) y=q(x) y^{n}$ is called the Bernoulli differential equation. If $n=1$ or $n=0$, then this is a linear equation. Otherwise, the substitution $u=y / y^{n}$ changes it into the linear first order equation $u^{\prime}+(1-n) p(x) u=(1-n) q(x)$.

Integrating Factors and Exact Equations

An equation $\mathbf{M} d x+\mathbf{N} d y=0$ is said to have an integrating factor $Q(x, y)$ if multiplication across the equation by Q produces an exact equation $M d x+N d y=0$. The definition implies $M=Q \mathbf{M}, N=Q \mathbf{N}$ and $M_{y}=N_{x}$. The search for Q is only interesting when $\mathbf{M}_{y} \neq \mathbf{N}_{x}$.
A systematic approach to finding Q includes a list of trial integrating factors, which are known to work for special equations:

$$
\begin{array}{ll}
Q=x^{a} y^{b} & \begin{array}{l}
\text { Require } x y\left(\mathbf{M}_{y}-\mathbf{N}_{x}\right)=a y \mathbf{N}-b x \mathbf{M} . \text { This integrat- } \\
\text { ing factor can introduce extraneous solutions } x=0
\end{array} \\
\text { or } y=0 .
\end{array} \quad \begin{array}{ll}
\text { Require } \mathbf{M}_{y}-\mathbf{N}_{x}=a \mathbf{N}-b \mathbf{M} . \\
Q=e^{a x+b y} & \text { Require } \mu=\left(\mathbf{M}_{y}-\mathbf{N}_{x}\right) / N \text { to be independent of } y . \\
Q=e^{\int \mu(x) d x} & \text { Require } \nu=\left(\mathbf{N}_{x}-\mathbf{M}_{y}\right) / M \text { to be independent of } x .
\end{array}
$$

Examples

44 Example (Homogeneous-A) Solve $y y^{\prime}=2 x+y^{2} / x$
Solution: The implicit solution will be shown to be

$$
y^{2}=c x^{2}+4 x^{2} \ln x \text {. }
$$

The equation $y y^{\prime}=2 x+y^{2} / x$ is not separable, linear nor exact. Division by y gives the homogeneous-A form $y^{\prime}=2 / u+u$ where $u=y / x$. Then

$$
\begin{array}{ll}
x u^{\prime}+u=2 / u+u & \text { Form } x u^{\prime}+u=F(u) . \\
x u^{\prime}=2 / u & \text { Separable form. } \\
u^{2}=c+4 \ln x & \text { Implicit solution } u . \\
y^{2}=x^{2} u^{2} & \text { Change of variables } y=x u . \\
\quad=c x^{2}+4 x^{2} \ln x & \text { Substitute } u^{2}=c+4 \ln x .
\end{array}
$$

Check the implicit solution against $y y^{\prime}=2 x+y^{2} / x$ as follows.

$$
\begin{aligned}
\text { LHS } & =y y^{\prime} & & \text { Left side of } y y^{\prime}=2 x+y^{2} / x . \\
& =\frac{1}{2}\left(y^{2}\right)^{\prime} & & \text { Calculus identity. } \\
& =\frac{1}{2}\left(c x^{2}+4 x^{2} \ln x\right)^{\prime} & & \text { Substitute. } \\
& =c x+4 x \ln x+2 x & & \text { Differentiate. } \\
& =2 x+y^{2} / x & & \text { Use } y^{2}=c x^{2}+4 x^{2} \ln x . \\
& =\text { RHS. } & & \text { Equality verified. }
\end{aligned}
$$

45 Example (Homogeneous-C) Solve $y^{\prime}=\frac{x+y+3}{x-y+5}$.
Solution: The implicit solution will be shown to be

$$
2 \ln (x+4)+\ln \left(\left(\frac{y-1}{x+4}\right)^{2}+1\right)-2 \arctan \left(\frac{y-1}{x+4}\right)=c .
$$

The equation would be of type homogeneous- A , if not for the constants 3 and 5 in the fraction $(x+y+3) /(x-y+5)$. The method applies a translation of coordinates $x=X-a, y=Y-b$ as below.

$x+y+3=X+Y$,	\quadRequire the translation to remove the con- $x-y+5=X-Y$$\quad$ stant terms.

$$
\begin{array}{ll}
3=a+b, & \text { Substitute } X=x+a, Y=y+b \text { and simplify. } \\
5=a-b & \text { Unique solution of the system. } \\
a=4, b=-1 & \text { Translated type homogeneous-A equation. } \\
\frac{d Y}{d X}=\frac{X+Y}{X-Y} & \text { Use } u=Y / X \text { to eliminate } Y . \\
X \frac{d u}{d X}+u=\frac{1+u}{1-u} & \text { Separated form. }
\end{array}
$$

The separated form is integrated as $\int d u /\left(1+u^{2}\right)-\int u d u /\left(1+u^{2}\right)=\int d X / X$. Evaluation gives the implicit solution

$$
\arctan (u)-\frac{1}{2} \ln \left(u^{2}+1\right)=C+\ln X .
$$

Changing variables $x=X-4, y=Y+1$ and consolidating constants produces the announced solution.
To check the solution by maple assist, use the following code, which tests $U(x, y)=c$ against $y^{\prime}=f(x, y)$. The test succeeds if odetest returns zero.

```
# Maple V 5.1
U:=(x,y) ->2* ln (x+4) + ln}(((y-1)/(x+4))^2+1)-2*arctan((y-1)/(x+4))
f:=(x,y)-> (x+y+3)/(x-y+5); DE:=diff (y(x),x)=f (x,y(x));
odetest(U(x,y(x))=c,DE);
```

46 Example (Bernoulli) Solve $y^{\prime}+2 y=y^{2}$.
Solution: It will be shown that the solution is $y=\frac{1}{1+C e^{x}}$.
The equation can be solved by other methods, notably separation of variables. Bernoulli's substitution $u=y / y^{n}$ will be applied to find the equivalent first order linear differential equation, as follows.

$$
\begin{aligned}
u^{\prime} & =\left(y / y^{2}\right)^{\prime} & & \text { Bernoulli's substitution, } n=2 . \\
& =-y^{-2} y^{\prime} & & \text { Chain rule. } \\
& =-1+y^{-1} & & \text { Use } y^{\prime}+2 y=y^{2} . \\
& =-1+u & & \text { Use } u=y / y^{2} .
\end{aligned}
$$

This linear equation $u^{\prime}=-1+u$ has equilibrium solution $u_{p}=1$ and homogeneous solution $u_{h}=C e^{x}$. Therefore, $u=u_{h}+u_{p}$ gives $y=u^{-1}=1 /\left(1+C e^{x}\right)$.

47 Example ($Q=x^{a} y^{b}$) Solve $\left(3 y+4 x y^{2}\right) d x+\left(4 x+5 x^{2} y\right) d y=0$.
Solution: The implicit solution $x^{3} y^{4}+x^{4} y^{5}=c$ will be justified.
The equation is not exact as written. To explain why, let $\mathbf{M}=3 y+4 x y^{2}$ and $\mathbf{N}=4 x+5 x^{2} y$. Then $\mathbf{M}_{y}=8 x y+3, \mathbf{N}_{x}=10 x y+4$ which implies $\mathbf{M}_{y} \neq \mathbf{N}_{x}$ (not exact).

The factor $Q=x^{a} y^{b}$ will be an integrating factor for the equation provided a and b are chosen to satisfy $x y\left(\mathbf{M}_{y}-\mathbf{N}_{x}\right)=a y \mathbf{N}-b x \mathbf{M}$. This requirement becomes $x y(-2 x y-1)=a y\left(4 x+5 x^{2} y\right)-b x\left(3 y+4 x y^{2}\right)$. Comparing terms across the equation gives the 2×2 system of equations

$$
\begin{aligned}
& 4 a-3 b=-1, \\
& 5 a-4 b=-2 .
\end{aligned}
$$

The unique solution by Cramer's determinant rule is

$$
a=\frac{\left|\begin{array}{ll}
-1 & -3 \\
-2 & -4
\end{array}\right|}{\left|\begin{array}{ll}
4 & -3 \\
5 & -4
\end{array}\right|}=2, \quad b=\frac{\left|\begin{array}{ll}
4 & -1 \\
5 & -2
\end{array}\right|}{\left|\begin{array}{ll}
4 & -3 \\
5 & -4
\end{array}\right|}=3 .
$$

Then $Q=x^{2} y^{3}$ is the required integrating factor. After multiplication by Q, the original equation becomes the exact equation

$$
\left(3 x^{2} y^{4}+4 x^{3} y^{5}\right) d x+\left(4 x^{3} y^{3}+5 x^{4} y^{4}\right) d y=0 .
$$

The method of potentials applied to $M=3 x^{2} y^{4}+4 x^{3} y^{5}$ and $N=4 x^{3} y^{3}+5 x^{4} y^{4}$ finds the potential U as follows.

$$
\begin{aligned}
U & =\int_{0}^{x} M(x, y) d x+\int_{0}^{y} N(0, y) d y & & \text { Method of potentials formula. } \\
& =\int_{0}^{x}\left(3 x^{2} y^{4}+4 x^{3} y^{5}\right) d x+\int_{0}^{y}(0) d y & & \text { Insert } M \text { and } N . \\
& =x^{3} y^{4}+x^{4} y^{5} & & \text { Evaluate integral. }
\end{aligned}
$$

48 Example ($Q=e^{a x+b y}$) Solve $\left(e^{x}+e^{y}\right) d x+\left(e^{x}+2 e^{y}\right) d y=0$.
Solution: The implicit solution $2 e^{3 x+3 y}+3 e^{2 x+4 y}=c$ will be justified. A constant $5 / 6$ appears in the integrations below, mysteriously absent in the solution, because $5 / 6$ has been absorbed into the constant c.
Let $\mathbf{M}=e^{x}+e^{y}$ and $\mathbf{N}=e^{x}+2 e^{y}$. Then $\mathbf{M}_{y}=e^{y}$ and $\mathbf{N}_{x}=e^{x}$ (not exact). The condition for $Q=e^{a x+b y}$ to be an integrating factor is $\mathbf{M}_{y}-\mathbf{N}_{x}=a \mathbf{N}-b \mathbf{M}$, which becomes the requirement

$$
e^{y}-e^{x}=a\left(e^{x}+2 e^{y}\right)-b\left(e^{x}+e^{y}\right) .
$$

The equations are satisfied provided (a, b) is a solution of the 2×2 system of equations

$$
\begin{aligned}
a-b & =-1, \\
2 a-b & =1 .
\end{aligned}
$$

The unique solution is $a=2, b=3$, by elimination. The original equation multiplied by the integrating factor $Q=e^{2 x+3 y}$ is the exact equation $M d x+$ $N d y=0$, where $M=e^{3 x+3 y}+e^{2 x+4 y}$ and $N=e^{3 x+3 y}+2 e^{2 x+4 y}$. The method of potentials applies to find the potential U, as follows.

$$
\begin{aligned}
U & =\int_{0}^{x} M(x, y) d x+\int_{0}^{y} N(0, y) d y & & \text { Method of potentials. } \\
& =\int_{0}^{x}\left(e^{3 x+3 y}+e^{2 x+4 y}\right) d x+\int_{0}^{y}\left(e^{3 y}+2 e^{4 y}\right) d y & & \text { Insert } M \text { and } N . \\
& =\frac{1}{3} e^{3 x+3 y}+\frac{1}{2} e^{2 x+4 y}-\frac{5}{6} & & \text { Evaluate integral. }
\end{aligned}
$$

49 Example ($Q=Q(x)$) Solve $(x+y) d x+\left(x-x^{2}\right) d y=0$.
Solution: The implicit solution $\frac{x y+x}{1-x}+\ln |x-1|=c$ will be justified.
Let $\mathbf{M}=x+y, \mathbf{N}=x-x^{2}$. Then $\mathbf{M}_{y}=1$ and $\mathbf{N}_{x}=1-2 x$ (not exact). Then

$$
\mu=\frac{\mathbf{M}_{y}-\mathbf{N}_{x}}{\mathbf{N}}
$$

$$
=2 /(1-x) \quad \text { Substitute } \mathbf{M}, \mathbf{N} \text {; success. }
$$

$$
Q=e^{\int \mu(x) d x} \quad \text { Integrating factor. }
$$

$$
=e^{-2 \ln |1-x|} \quad \text { Substitute for } \mu \text { and integrate }
$$

$$
=(1-x)^{-2} \quad \text { Simplified factor found }
$$

Multiplication of $\mathbf{M} d x+\mathbf{N} d y=0$ by Q gives the corresponding exact equation

$$
\frac{x+y}{(1-x)^{2}} d x+\frac{x}{1-x} d y=0 .
$$

The method of potentials applied to $M=(x+y) /(1-x)^{2}, N=x /(1-x)$ finds the implicit solution as follows.

$$
\begin{aligned}
U & =\int_{0}^{x} M(x, y) d x+\int_{0}^{y} N(0, y) d y & & \text { Method of potentials. } \\
& =\int_{0}^{x} \frac{x+y}{(1-x)^{2}} d x+\int_{0}^{y}(0) d y & & \text { Substitute for } M, N . \\
& =\int_{0}^{x}\left(\frac{y+1}{(x-1)^{2}}+\frac{1}{x-1}\right) d x & & \text { Partial fractions. } \\
& =\frac{x y+x}{1-x}+\ln |x-1| & & \text { Evaluate integral. }
\end{aligned}
$$

50 Example ($Q=Q(y)$) Solve $\left(y-y^{2}\right) d x+(x+y) d y=0$.
Solution: Interchange the roles of x and y, then apply the previous example, to obtain the implicit solution $\frac{x y+y}{1-y}+\ln |y-1|=c$.
This example happens to fit the case when the integrating factor is a function of y alone. The details parallel the previous example.

Details and Proofs

The exactness condition $M_{y}=N_{x}$ for $M=Q \mathbf{M}$ and $N=Q \mathbf{N}$ becomes in the case $Q=x^{a} y^{b}$ the relation

$$
b x^{a} y^{b-1} \mathbf{M}+x^{a} y^{b} \mathbf{M}_{y}=a x^{a-1} y^{b} \mathbf{N}+x^{a} y^{b} \mathbf{N}_{x}
$$

from which rearrangement gives $x y\left(\mathbf{M}_{y}-\mathbf{N}_{x}\right)=a y \mathbf{N}-b x \mathbf{M}$. The case $Q=e^{a x+b y}$ is similar.

Consider $Q=e^{\int \mu(x) d x}$. Then $Q^{\prime}=\mu Q$. The exactness condition $M_{y}=$ N_{x} for $M=Q \mathbf{M}$ and $N=Q \mathbf{N}$ becomes $Q \mathbf{M}_{y}=\mu Q \mathbf{N}+Q \mathbf{N}_{x}$ and finally

$$
\mu=\frac{\mathbf{M}_{y}-\mathbf{N}_{x}}{\mathbf{N}}
$$

The similar case $Q=e^{\int \nu(y) d y}$ is obtained from the preceding case, by swapping the roles of x, y.

Exercises 2.10

Homogeneous-A Equations. Find f such that the equation can be written in the form $y^{\prime}=f(y / x)$, then solve for y. Check the answer using a computer algebra system.

1. $x y^{\prime}=y^{2} / x$
2. $x^{2} y^{\prime}=x^{2}+y^{2}$
3. $y y^{\prime}=\frac{x y^{2}}{x^{2}+y^{2}}$
4. $y y^{\prime}=\frac{2 x y^{2}}{4 x^{2}+y^{2}}$
5. $y^{\prime}=\frac{y^{2}}{4 x^{2}+y^{2}}$
6. $y^{\prime}=\frac{y^{2}}{x^{2}+y^{2}}$
7. $y^{\prime}=\frac{y^{2}}{(x+y)^{2}}$
8. $y^{\prime}=\frac{x y}{(x+y)^{2}}$
9. $y^{\prime}=\frac{y\left(y^{2}+4 y x+5 x^{2}\right)}{x(y+2 x)^{2}}$
10. $y^{\prime}=\frac{y^{2}(y+2 x)}{x(y+x)^{2}}$

Homogeneous-C Equations.

Decompose $f=G(R(x, y))$ where $R(x, y)=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$, then solve $y^{\prime}=$ $f(x, y)$.
11. $y^{\prime}=\frac{(y+1) x}{y^{2}+2 y+1+x^{2}}$
12. $y^{\prime}=2 \frac{(y+1) x}{4 y^{2}+8 y+4+x^{2}}$
13. $y^{\prime}=\frac{(x+1)^{2}}{4 y^{2}+x^{2}+2 x+1}$
14. $y^{\prime}=\frac{(x+1)^{2}}{(x+1+y)^{2}}$
15. $y^{\prime}=\frac{(y+x)(x+1)}{(2 x+1+y)^{2}}$
16. $y^{\prime}=\frac{x\left(2 y^{2}+6 y x+5 x^{2}\right)}{(y+x)(y+2 x)^{2}}$
17. $y^{\prime}=\frac{(y+x)\left(3 y^{2}+6 y x+2 y+3 x^{2}+2 x\right)}{(x+1+y)(2 y+2 x+1)^{2}}$
18. $y^{\prime}=\frac{(y+2 x)^{2}}{x^{2}}$
19. $y^{\prime}=\frac{(2 y+x)^{2}}{y^{2}}$
20. $y^{\prime}=\frac{x^{2}}{(y+4 x)^{2}}$

Bernoulli's Equation. Identify the exponent n in Bernoulli's equation $y^{\prime}+$ $p(x) y=q(x) y^{n}$ and solve for $y(x)$.
21. $y^{-2} y^{\prime}=1+x$
22. $y y^{\prime}=1+x$
23. $y^{-2} y^{\prime}+y^{-1}=1+x$
24. $y y^{\prime}+y^{2}=1+x$
25. $y^{\prime}+y=y^{1 / 3}$
26. $y^{\prime}+y=y^{1 / 5}$
27. $y^{\prime}-y=y^{-1 / 2}$
28. $y^{\prime}-y=y^{-1 / 3}$
29. $y y^{\prime}+y^{2}=e^{x}$
30. $y^{\prime}+y=e^{2 x} y^{2}$

Integrating Factor $x^{a} y^{b}$. Report an implicit solution for the given equation $M d x+N d y=0$, using an integrating factor $Q=x^{a} y^{b}$. Follow Example ??, page ??.
31. $M=3 x y-6 y^{2}, N=4 x^{2}-15 x y$
32. $M=3 x y-10 y^{2}, N=4 x^{2}-25 x y$
33. $M=2 y-12 x y^{2}, N=4 x-20 x^{2} y$
34. $M=2 y-21 x y^{2}, N=4 x-35 x^{2} y$
35. $M=3 y-32 x y^{2}, N=4 x-40 x^{2} y$
36. $M=3 y-20 x y^{2}, N=4 x-25 x^{2} y$
37. $M=12 y-30 x^{2} y^{2}$,
$N=12 x-25 x^{3} y$
38. $M=12 y+90 x^{2} y^{2}$,
$N=12 x+75 x^{3} y$
39. $M=15 y+90 x y^{2}$,
$N=12 x+75 x^{2} y$
40. $M=35 y+30 x y^{2}$,
$N=28 x+25 x^{2} y$.
Integrating Factor $e^{a x+b y}$. Report an implicit solution $U(x, y)=c$ for the given equation $M d x+N d y=0$ using an integrating factor $Q=e^{a x+b y}$. Follow Example ??, page ??.
41. $M=e^{x}+2 e^{2 y}, N=e^{x}+5 e^{5 y}$
42. $M=3 e^{x}+2 e^{y}, N=4 e^{x}+5 e^{y}$
43. $M=12 e^{x}+2, N=20 e^{x}+5$
44. $M=12 e^{x}+2 e^{-y}, N=24 e^{x}+$ $5 e^{-y}$
45. $M=12 e^{y}+2 e^{-x}, N=24 e^{y}+$ $5 e^{-x}$
46. $M=12 e^{-2 y}+2 e^{-x}, \quad N=$ $12 e^{-2 y}+5 e^{-x}$
47. $M=16 e^{y}+2 e^{-2 x+3 y}, N=$ $12 e^{y}+5 e^{-2 x+3 y}$
48. $M=16 e^{-y}+2 e^{-2 x-3 y}, N=$ $-12 e^{-y}-5 e^{-2 x-3 y}$
49. $M=-16-2 e^{2 x+y}, N=12+$ $4 e^{2 x+y}$
50. $M=-16 e^{-3 y}-2 e^{2 x}, N=$ $8 e^{-3 y}+5 e^{2 x}$

Integrating Factor $Q(x)$. Report an implicit solution $U(x, y)=c$ for the given equation, using an integrating factor $Q=Q(x)$. Follow Example ??, page ??.
51. $(x+2 y) d x+\left(x-x^{2}\right) d y=0$
52. $(x+3 y) d x+\left(x-x^{2}\right) d y=0$
53. $(2 x+y) d x+\left(x-x^{2}\right) d y=0$
54. $(2 x+y) d x+\left(x+x^{2}\right) d y=0$
55. $(2 x+y) d x+\left(2 x+x^{2}\right) d y=0$
56. $(x+y) d x+\left(2 x+x^{2}\right) d y=0$
57. $(x+y) d x+\left(3 x+x^{2}\right) d y=0$
58. $(x+y) d x+\left(3 x+5 x^{2}\right) d y=0$
59. $(x+y) d x+(3 x) d y=0$
60. $(x+y) d x+(7 x) d y=0$

Integrating Factor $Q(y)$.
61. $\left(y-y^{2}\right) d x+(x+y) d y=0$
62. $\left(y-y^{2}\right) d x+(2 x+y) d y=0$
63. $\left(y-y^{2}\right) d x+(2 x+3 y) d y=0$
64. $\left(y+y^{2}\right) d x+(2 x+3 y) d y=0$
65. $\left(y+y^{2}\right) d x+(5 x+3 y) d y=0$
66. $\left(y+5 y^{2}\right) d x+(5 x+3 y) d y=0$
67. $\left(2 y+5 y^{2}\right) d x+(5 x+3 y) d y=0$
68. $\left(2 y+5 y^{2}\right) d x+(7 x+11 y) d y=0$
69. $\left(2 y+5 y^{3}\right) d x+(3 x+7 y) d y=0$
70. $\left(3 y+5 y^{3}\right) d x+(7 x+9 y) d y=0$

