
2.9 Exact Equations and Level Curves 151

2.9 Exact Equations and Level Curves

A level curve or a conservation law is an equation of the form

U(x, y) = c.

Hikers like to think of U as the altitude at position (x, y) on the map and
U(x, y) = c as the curve which represents the easiest walking path, that
is, altitude does not change along that route. The altitude is conserved
along the route, hence the terminology conservation law.

Other examples of level curves are isobars and isotherms. An isobar is a
planar curve where the atmospheric pressure is constant. An isotherm
is a planar curve along which the temperature is constant.

Definition 3 (Potential)
The function U(x, y) in a conservation law is called a potential. The
dynamical equation is the first order differential equation

Mdx+Ndy = 0, M = Ux(x, y), N = Uy(x, y).(1)

The dynamics or changes in x and y are described by (1). To solve
Mdx+Ndy = 0 means this: find a conservation law U(x, y) = c so that
(1) holds. Formally, (1) is found by implicit differentiation of U(x, y) = c;
see Technical Details, page 154.

The Potential Problem and Exactness

The potential problem assumes given a dynamical equation Mdx +
Ndy = 0 and seeks to find a potential U(x, y) from the set of equations

Ux = M(x, y),
Uy = N(x, y).

(2)

If some potential U(x, y) satisfies equation (2), then Mdx+Ndy = 0 is
said to be exact. It is a consequence of the mixed partial equality Uxy =
Uyx that the existence of a solution U implies My = Nx. Surprisingly,
this condition is also sufficient.

Theorem 5 (Exactness)
Let M(x, y), N(x, y) and their first partials be continuous in a rectangle D.
Assume My(x, y) = Nx(x, y) in D and (x0, y0) is a point of D. Then the
equation Mdx+Ndy = 0 is exact with potential U given by the formula

U(x, y) =
∫ x

x0

M(t, y)dt+
∫ y

y0
N(x0, s)ds.(3)

The proof is delayed to page 154.
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The Method of Potentials

Formula (3) has technical problems because it requires two integrations.
The integrands have a parameter: they are parametric integrals. Inte-
gration effort can be reduced by using the method of potentials for
Mdx + Ndy = 0, which applies equation (3) with x0 = y0 = 0 in order
to simplify integrations.

Test My = Nx Compute the partials My and Nx, then test the
equality My = Nx. Proceed if equality holds.

Trial Potential Let U =
∫ x
0 M(x, y)dx +

∫ y
0 N(0, y)dy. Evaluate

both integrals.

Test U(x, y) Compute Ux and Uy, then test both Ux = M and
Uy = N . This step finds integration errors.

Examples

40 Example (Exactness Test) Test Mdx + Ndy = 0 for the existence of a
potential U , given M = 2xy + y3 + y and N = x2 + 3xy2 + x,

Solution: Theorem 5 implies that Mdx + Ndy = 0 has a potential U exactly
when My = Nx. It suffices to compute the partials and show they are equal.

My = ∂y(2xy + y3 + y) Nx = ∂x(x2 + 3xy2 + x)

= 2x+ 3y2 + 1, = 2x+ 3y2 + 1.

41 Example (Conservation Law Test) Test whether U = x2y+xy3+xy is a
potential for Mdx+Ndy = 0, given M = 2xy+y3 +y, N = x2 +3xy2 +x.

Solution: By definition, it suffices to test the equalities Ux = M and Uy = N .

Ux = ∂x(x2y + xy3 + xy) Uy = ∂y(x2y + xy3 + xy)

= 2xy + y3 + y = x2 + 3xy2 + x

= M , = N .

42 Example (Method of Potentials) Solve y′ = − 2xy + y3 + y

x2 + 3xy2 + x
.

Solution: The implicit solution x2y + xy3 + xy = c will be justified.

The equation has the form Mdx+Ndy = 0 where M = 2xy+ y3 + y and N =
x2 +3xy2 +x. It is exact, by Theorem 5, because the partials My = 2x+3y2 +1
and Nx = 2x+ 3y2 + 1 are equal.

The method of potentials applies to find the potential U = x2y + xy3 + xy as
follows.

U =
∫ x
0
M(x, y)dx+

∫ y
0
N(0, y)dy Formula for U , Theorem 5.



2.9 Exact Equations and Level Curves 153

=
∫ x
0

(
2xy + y3 + y

)
dx+

∫ y
0

(0)dy Insert M and N .

= x2y + xy3 + xy Evaluate integral.

Observe that N(x, y) simplifies to zero at x = 0, which reduces the actual work
in half. Any choice other than x0 = 0 in Theorem 5 increases the labor.

To test the solution, compute the partials of U , then compare them to M and
N ; see Example 41.

43 Example (Exact Equation) Solve
x+ y

(1− x)2
dx+

x

1− x
dy = 0.

Solution: The implicit solution
xy + x

1− x
+ ln |x− 1| = c will be justified.

Assume given the exactness of the equation Mdx + Ndy = 0, where M =
(x+ y)/(1− x)2 and N = x/(1− x). Apply Theorem 5:

U =
∫ x
0
M(x, y)dx+

∫ y
0
N(0, y)dy Method of potentials.

=
∫ x
0

x+ y

(1− x)2
dx+

∫ y
0

(0)dy Substitute for M , N .

=
∫ x
0

(
y + 1

(x− 1)2
+

1
x− 1

)
dx Partial fractions.

=
xy + x

1− x
+ ln |x− 1| Evaluate integral.

Additional examples, including the context for the preceding example,
appear in the next section.

Remarks on the Method of Potentials

Indefinite integrals
∫
M(x, y)dx and

∫
N(0, y)dy can be used, provided

the two integration answers are zero at x = 0 and y = 0, respectively.
Swapping the roles of x and y gives U =

∫ y
0 N(x, y)dy+

∫ x
0 M(x, 0)dx, a

form which may have easier integrations.

Can the test My = Nx be skipped? True, it is enough to verify that the
potential works (the last step). If the last step fails, then the first step
must be done to resolve the error.

The equation ydx + 2xdy = 0 fails My = Nx and the trial potential
U = xy fails Ux = M , Uy = N . In the equivalent form x−1dx+2y−1dy =
0, the method of potentials does not apply directly, because (0, 0) is
outside the domain of continuity. Nevertheless, the trial potential U =
lnx + 2 ln y passes the test Ux = M , Uy = N . Such pleasant accidents
account for the popularity of the method of potentials.

It is prudent in applications of Theorem 5 to test x0 = y0 = 0 in M and
N , to detect a discontinuity. If detected, then another vertex x0, y0 of
the unit square, e.g., x0 = y0 = 1, might suffice.
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Details and Proofs

Justification of equation (1) uses the calculus chain rule

d

dt
U(x(t), y(t)) = Ux(x(t), y(t))x′(t) + Uy(x(t), y(t))y′(t)

and differential notation dx = x′(t)dt, dy = y′(t)dt. To justify (1), let
(x(t), y(t)) be some parameterization of the level curve, then differentiate
on t across the equation U(x(t), y(t)) = c and apply the chain rule.
Proof of Theorem 5

Background result. The proof assumes the following identity:

∂

∂y

∫ x

x0

M(t, y)dt =
∫ x

x0

My(t, y)dt.

The identity is obtained by forming the Newton quotient (G(y+h)−G(y))/h for
the derivative of G(y) =

∫ x
x0
M(t, y)dt and then taking the limit as h approaches

zero. Technically, the limit must be taken inside an integral sign, which for
success requires continuity of the partial My.
Details. It has to be shown that the implicit relation U(x, y) = c with U
defined by (3) is a solution of the exact equation Mdx + Ndy = 0, that is,
the relations Ux = M , Uy = N hold. The partials are calculated from the
background result as follows.

Ux = ∂x
∫ x
x0
M(t, y)dt Use (3), in which the second integral does

not depend on x.

= M(x, y), Fundamental theorem of calculus.

Uy = ∂y
∫ x
x0
M(t, y)dt

+ ∂y
∫ y
y0
N(x0, s)ds

Use (3).

=
∫ x
x0
My(t, y)dt+N(x0, y) Apply the background result and the fun-

damental theorem.
=
∫ x
x0
Nx(t, y)dt+N(x0, y) Substitute My = Nx.

= N(x, y) Fundamental theorem of calculus.

The verification is complete.

Power Series Proof of Theorem 5 It will be assumed that M and N have
power series expansions about x = y = 0. Let U1 =

∫
M(x, y)dx and U2 =∫

N(x, y)dy with U1(0, y) = U2(x, 0) = 0. The series forms of U1 and U2 will
be

U1 =
∑∞
i=1

∑∞
j=1 cijx

iyj +
∑∞
i=1 aix

i,

U2 =
∑∞
i=1

∑∞
j=1 dijx

iyj +
∑∞
j=1 bjy

j .

The identities ∂y∂xU1 = My = Nx = ∂x∂yU2 imply that cij = dij , using
term-by-term differentiation. The trial potential is U = U1 +

∑∞
j=1 bjy

j or
U = U2 +

∑∞
i=1 aix

i. From these relations it follows that Ux = M and Uy = N .
Therefore, Mdx+Ndy = 0 is exact with potential U .

A Popular Method. The power series proof justifies this method:
the potential U is the sum of

∫
Mdx and the terms from

∫
Ndy which do

not appear in
∫
Mdx.

Simplifications of the integrand in
∫
N(0, y)dy, due to x = 0, suggest

that
∫
N(x, y)dy might involve more labor. Examples show that this

insight is correct.
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Exercises 2.9

Exactness Test. Test the equality
My = Nx for the given equation, as
written, and report exact when true.
Do not try to solve the differential
equation. See Example 40, page 152.

1. (y − x)dx+ (y + x)dy = 0

2. (y + x)dx+ (x− y)dy = 0

3. (y +
√
xy)dx+ (−y)dy = 0

4. (y +
√
xy)dx+ xydy = 0

5. (x2 + 3y2)dx+ 6xydy = 0

6. (y2 + 3x2)dx+ 2xydy = 0

7. (y3 + x3)dx+ 3xy2dy = 0

8. (y3 + x3)dx+ 2xy2dy = 0

9. 2xydx+ (x2 − y2)dy = 0

10. 2xydx+ (x2 + y2)dy = 0

Conservation Law Test. For each
given conservation law U(x, y) = c, re-
port whether or not it is a solution to
Mdx + Ndy = 0. See Example 41,
page 152.

11. 2xydx+ (x2 + 3y2)dy = 0,
x2y + y3 = c

12. 2xydx+ (x2 − 3y2)dy = 0,
x2y − y3 = c

13. (3x2 + 3y2)dx+ 6xydy = 0,
x3 + 3xy2 = c

14. (x2 + 3y2)dx+ 6xydy = 0,
x3 + 3xy2 = c

15. (y − 2x)dx+ (2y + x)dy = 0,
xy − x2 + y2 = c

16. (y + 2x)dx+ (−2y + x)dy = 0,
xy + x2 − y2 = c

Exactness Theorem. Apply the ex-
actness Theorem 5 and possibly the
method of potentials to find an im-
plicit solution U(x, y) = c for the given
differential equation. See Examples
42-43, page 152.

17. (y − 4x)dx+ (4y + x)dy = 0

18. (y + 4x)dx+ (4y + x)dy = 0

19. (ey + ex)dx+ (xey)dy = 0

20. (e2y + ex)dx+ (2xe2y)dy = 0

21. (1 + yexy)dx+ (2y + xexy)dy = 0

22. (1+ye−xy)dx+(xe−xy−4y)dy = 0

23. (2x+ arctan y)dx+
x

1 + y2
dy = 0

24. (2x+ arctan y)dx+
x+ 2y
1 + y2

dy = 0

25.
2x5 + 3y3

x4y
dx− 2y3 + x5

x3y2
dy = 0

26.
2x4 + y2

x3y
dx− 2x4 + y2

2x2y2
dy = 0

27. Mdx + Ndy = 0, M = ex sin y +
tan y, N = ex cos y + x sec2 y

28. Mdx + Ndy = 0, M = ex cos y +
tan y, N = −ex sin y + x sec2 y

29.
(
x2 + ln y

)
dx+

(
y3 + x/y

)
dy = 0

30.
(
x3 + ln y

)
dx+

(
y3 + x/y

)
dy = 0
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2.10 Special equations

Homogeneous-A Equation

A first order equation of the form y′ = F (y/x) is called a homogeneous
class A equation. . The substitution u = y/x changes it into an
equivalent first order separable equation xu′ + u = F (u). Solutions of
y′ = F (y/x) and xu′ + u = F (u) are related by the relation y = xu.

Homogeneous-C Equation

Let R(x, y) be a rational function constructed from two affine functions:

R(x, y) =
a1x+ b1y + c1
a2x+ b2y + c2

.

A first order equation of the form y′ = G(R(x, y)) is called a homoge-
neous class C equation . If the system

a1a+ b1b = c1, a2a+ b2b = c2

has a solution (a, b), then the change of variables x = X − a, y = Y − b
effectively eliminates the terms c1 and c2. Accordingly, the equation
y′ = G(R(x, y)) converts into a homogeneous class A equation

Y ′ = G

(
a1 + b1Y/X

a2 + b2Y/X

)
.

This equation type was solved in the previous paragraph. Justification
follows from y′ = Y ′ and R(X − a, Y − b) = (a1X + b1Y )/(a2X + b2Y ).

Bernoulli’s Equation

The equation y′ + p(x)y = q(x)yn is called the Bernoulli differential
equation. If n = 1 or n = 0, then this is a linear equation. Otherwise,
the substitution u = y/yn changes it into the linear first order equation
u′ + (1− n)p(x)u = (1− n)q(x).

Integrating Factors and Exact Equations

An equation Mdx + Ndy = 0 is said to have an integrating factor
Q(x, y) if multiplication across the equation by Q produces an exact
equation Mdx + Ndy = 0. The definition implies M = QM, N = QN
and My = Nx. The search for Q is only interesting when My 6= Nx.

A systematic approach to finding Q includes a list of trial integrating
factors, which are known to work for special equations:
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Q = xayb Require xy (My −Nx) = ayN−bxM. This integrat-
ing factor can introduce extraneous solutions x = 0
or y = 0.

Q = eax+by Require My −Nx = aN− bM.

Q = e
∫
µ(x)dx Require µ = (My −Nx) /N to be independent of y.

Q = e
∫
ν(y)dy Require ν = (Nx −My) /M to be independent of x.

Examples

44 Example (Homogeneous-A) Solve yy′ = 2x+ y2/x

Solution: The implicit solution will be shown to be

y2 = cx2 + 4x2 lnx.

The equation yy′ = 2x+ y2/x is not separable, linear nor exact. Division by y
gives the homogeneous-A form y′ = 2/u+ u where u = y/x. Then

xu′ + u = 2/u+ u Form xu′ + u = F (u).

xu′ = 2/u Separable form.

u2 = c+ 4 lnx Implicit solution u.

y2 = x2u2 Change of variables y = xu.

= cx2 + 4x2 lnx Substitute u2 = c+ 4 lnx.

Check the implicit solution against yy′ = 2x+ y2/x as follows.

LHS = yy′ Left side of yy′ = 2x+ y2/x.

= 1
2 (y2)′ Calculus identity.

= 1
2 (cx2 + 4x2 lnx)′ Substitute.

= cx+ 4x lnx+ 2x Differentiate.

= 2x+ y2/x Use y2 = cx2 + 4x2 lnx.

= RHS. Equality verified.

45 Example (Homogeneous-C) Solve y′ =
x+ y + 3
x− y + 5

.

Solution: The implicit solution will be shown to be

2 ln(x+ 4) + ln

((
y − 1
x+ 4

)2

+ 1

)
− 2 arctan

(
y − 1
x+ 4

)
= c.

The equation would be of type homogeneous-A, if not for the constants 3 and
5 in the fraction (x + y + 3)/(x − y + 5). The method applies a translation of
coordinates x = X − a, y = Y − b as below.

x+ y + 3 = X + Y,
x− y + 5 = X − Y

Require the translation to remove the con-
stant terms.
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3 = a+ b,
5 = a− b

Substitute X = x+a, Y = y+b and simplify.

a = 4, b = −1 Unique solution of the system.

dY

dX
=
X + Y

X − Y
Translated type homogeneous-A equation.

X
du

dX
+ u =

1 + u

1− u
Use u = Y/X to eliminate Y .

1− u
1 + u2

du

dX
=

1
X

Separated form.

The separated form is integrated as
∫
du/(1 +u2)−

∫
udu/(1 +u2) =

∫
dX/X.

Evaluation gives the implicit solution

arctan(u)− 1
2

ln
(
u2 + 1

)
= C + lnX.

Changing variables x = X − 4, y = Y + 1 and consolidating constants produces
the announced solution.

To check the solution by maple assist, use the following code, which tests
U(x, y) = c against y′ = f(x, y). The test succeeds if odetest returns zero.

# Maple V 5.1
U:=(x,y)->2*ln(x+4)+ln(((y-1)/(x+4))^2+1)-2*arctan((y-1)/(x+4));
f:=(x,y)->(x+y+3)/(x-y+5); DE:=diff(y(x),x)=f(x,y(x));
odetest(U(x,y(x))=c,DE);

46 Example (Bernoulli) Solve y′ + 2y = y2.

Solution: It will be shown that the solution is y =
1

1 + Cex
.

The equation can be solved by other methods, notably separation of variables.
Bernoulli’s substitution u = y/yn will be applied to find the equivalent first
order linear differential equation, as follows.

u′ = (y/y2)′ Bernoulli’s substitution, n = 2.

= −y−2y′ Chain rule.

= −1 + y−1 Use y′ + 2y = y2.

= −1 + u Use u = y/y2.

This linear equation u′ = −1 + u has equilibrium solution up = 1 and homoge-
neous solution uh = Cex. Therefore, u = uh +up gives y = u−1 = 1/(1 +Cex).

47 Example (Q = xayb) Solve (3y + 4xy2)dx+ (4x+ 5x2y)dy = 0.

Solution: The implicit solution x3y4 + x4y5 = c will be justified.

The equation is not exact as written. To explain why, let M = 3y + 4xy2 and
N = 4x + 5x2y. Then My = 8xy + 3, Nx = 10xy + 4 which implies My 6= Nx

(not exact).
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The factor Q = xayb will be an integrating factor for the equation provided
a and b are chosen to satisfy xy (My −Nx) = ayN − bxM. This requirement
becomes xy (−2xy − 1) = ay(4x + 5x2y) − bx(3y + 4xy2). Comparing terms
across the equation gives the 2× 2 system of equations

4a − 3b = −1,
5a − 4b = −2.

The unique solution by Cramer’s determinant rule is

a =

∣∣∣∣ −1 −3
−2 −4

∣∣∣∣∣∣∣∣ 4 −3
5 −4

∣∣∣∣ = 2, b =

∣∣∣∣ 4 −1
5 −2

∣∣∣∣∣∣∣∣ 4 −3
5 −4

∣∣∣∣ = 3.

Then Q = x2y3 is the required integrating factor. After multiplication by Q,
the original equation becomes the exact equation

(3x2y4 + 4x3y5)dx+ (4x3y3 + 5x4y4)dy = 0.

The method of potentials applied to M = 3x2y4+4x3y5 and N = 4x3y3+5x4y4

finds the potential U as follows.

U =
∫ x
0
M(x, y)dx+

∫ y
0
N(0, y)dy Method of potentials formula.

=
∫ x
0

(3x2y4 + 4x3y5)dx+
∫ y
0

(0)dy Insert M and N .

= x3y4 + x4y5 Evaluate integral.

48 Example (Q = eax+by) Solve (ex + ey) dx+ (ex + 2ey) dy = 0.

Solution: The implicit solution 2e3x+3y + 3e2x+4y = c will be justified. A con-
stant 5/6 appears in the integrations below, mysteriously absent in the solution,
because 5/6 has been absorbed into the constant c.

Let M = ex + ey and N = ex + 2ey. Then My = ey and Nx = ex (not exact).
The condition for Q = eax+by to be an integrating factor is My−Nx = aN−bM,
which becomes the requirement

ey − ex = a (ex + 2ey)− b (ex + ey) .

The equations are satisfied provided (a, b) is a solution of the 2 × 2 system of
equations

a − b = −1,
2a − b = 1.

The unique solution is a = 2, b = 3, by elimination. The original equation
multiplied by the integrating factor Q = e2x+3y is the exact equation Mdx +
Ndy = 0, where M = e3x+3y + e2x+4y and N = e3x+3y + 2e2x+4y. The method
of potentials applies to find the potential U , as follows.

U =
∫ x
0
M(x, y)dx+

∫ y
0
N(0, y)dy Method of potentials.

=
∫ x
0

(
e3x+3y + e2x+4y

)
dx+

∫ y
0

(
e3y + 2e4y

)
dy Insert M and N .

= 1
3e

3x+3y + 1
2e

2x+4y − 5
6 Evaluate integral.
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49 Example (Q = Q(x)) Solve (x+ y)dx+ (x− x2)dy = 0.

Solution: The implicit solution
xy + x

1− x
+ ln |x− 1| = c will be justified.

Let M = x+ y, N = x− x2. Then My = 1 and Nx = 1− 2x (not exact). Then

µ =
My −Nx

N
Hope µ depends on x alone.

= 2/(1− x) Substitute M, N; success.

Q = e
∫
µ(x)dx Integrating factor.

= e−2 ln |1−x| Substitute for µ and integrate.

= (1− x)−2 Simplified factor found.

Multiplication of Mdx+ Ndy = 0 by Q gives the corresponding exact equation

x+ y

(1− x)2
dx+

x

1− x
dy = 0.

The method of potentials applied to M = (x+y)/(1−x)2, N = x/(1−x) finds
the implicit solution as follows.

U =
∫ x
0
M(x, y)dx+

∫ y
0
N(0, y)dy Method of potentials.

=
∫ x
0

x+ y

(1− x)2
dx+

∫ y
0

(0)dy Substitute for M , N .

=
∫ x
0

(
y + 1

(x− 1)2
+

1
x− 1

)
dx Partial fractions.

=
xy + x

1− x
+ ln |x− 1| Evaluate integral.

50 Example (Q = Q(y)) Solve (y − y2)dx+ (x+ y)dy = 0.

Solution: Interchange the roles of x and y, then apply the previous example,

to obtain the implicit solution
xy + y

1− y
+ ln |y − 1| = c.

This example happens to fit the case when the integrating factor is a function
of y alone. The details parallel the previous example.

Details and Proofs

The exactness condition My = Nx for M = QM and N = QN becomes
in the case Q = xayb the relation

bxayb−1M + xaybMy = axa−1ybN + xaybNx

from which rearrangement gives xy (My −Nx) = ayN− bxM. The case
Q = eax+by is similar.
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Consider Q = e
∫
µ(x)dx. Then Q′ = µQ. The exactness condition My =

Nx for M = QM and N = QN becomes QMy = µQN+QNx and finally

µ =
My −Nx

N
.

The similar case Q = e
∫
ν(y)dy is obtained from the preceding case, by

swapping the roles of x, y.

Exercises 2.10

Homogeneous-A Equations. Find f
such that the equation can be written
in the form y′ = f(y/x), then solve for
y. Check the answer using a computer
algebra system.

1. xy′ = y2/x

2. x2y′ = x2 + y2

3. yy′ = xy2

x2+y2

4. yy′ = 2xy2

4x2+y2

5. y′ = y2

4x2+y2

6. y′ = y2

x2+y2

7. y′ = y2

(x+y)2

8. y′ = xy
(x+y)2

9. y′ =
y(y2+4 yx+5 x2)

x(y+2 x)2

10. y′ = y2(y+2 x)

x(y+x)2

Homogeneous-C Equations.
Decompose f = G(R(x, y)) where
R(x, y) = a1x+b1y+c1

a2x+b2y+c2
, then solve y′ =

f(x, y).

11. y′ = (y+1)x
y2+2 y+1+x2

12. y′ = 2 (y+1)x
4 y2+8 y+4+x2

13. y′ = (x+1)2

4 y2+x2+2 x+1

14. y′ = (x+1)2

(x+1+y)2

15. y′ = (y+x)(x+1)

(2 x+1+y)2

16. y′ =
x(2 y2+6 yx+5 x2)

(y+x)(y+2 x)2

17. y′ =
(y+x)(3 y2+6 yx+2 y+3 x2+2 x)

(x+1+y)(2 y+2 x+1)2

18. y′ = (y+2 x)2

x2

19. y′ = (2 y+x)2

y2

20. y′ = x2

(y+4 x)2

Bernoulli’s Equation. Identify the
exponent n in Bernoulli’s equation y′+
p(x)y = q(x)yn and solve for y(x).

21. y−2y′ = 1 + x

22. yy′ = 1 + x

23. y−2y′ + y−1 = 1 + x

24. yy′ + y2 = 1 + x

25. y′ + y = y1/3

26. y′ + y = y1/5

27. y′ − y = y−1/2

28. y′ − y = y−1/3

29. yy′ + y2 = ex

30. y′ + y = e2xy2

Integrating Factor xayb. Report an
implicit solution for the given equation
Mdx+Ndy = 0, using an integrating
factor Q = xayb. Follow Example ??,
page ??.

31. M = 3xy − 6y2, N = 4x2 − 15xy
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32. M = 3xy− 10y2, N = 4x2− 25xy

33. M = 2 y−12xy2, N = 4x−20x2y

34. M = 2 y−21xy2, N = 4x−35x2y

35. M = 3 y−32xy2, N = 4x−40x2y

36. M = 3 y−20xy2, N = 4x−25x2y

37. M = 12 y − 30x2y2,
N = 12x− 25x3y

38. M = 12 y + 90x2y2,
N = 12x+ 75x3y

39. M = 15 y + 90xy2,
N = 12x+ 75x2y

40. M = 35 y + 30xy2,
N = 28x+ 25x2y.

Integrating Factor eax+by. Report
an implicit solution U(x, y) = c for the
given equation Mdx + Ndy = 0 using
an integrating factor Q = eax+by. Fol-
low Example ??, page ??.

41. M = ex + 2e2y, N = ex + 5e5y

42. M = 3ex + 2ey, N = 4ex + 5ey

43. M = 12 ex + 2, N = 20 ex + 5

44. M = 12 ex + 2 e−y, N = 24 ex +
5 e−y

45. M = 12 ey + 2 e−x, N = 24 ey +
5 e−x

46. M = 12 e−2 y + 2 e−x, N =
12 e−2 y + 5 e−x

47. M = 16 ey + 2 e−2 x+3 y, N =
12 ey + 5 e−2 x+3 y

48. M = 16 e−y + 2 e−2 x−3 y, N =
−12 e−y − 5 e−2 x−3 y

49. M = −16 − 2 e2 x+y, N = 12 +
4 e2 x+y

50. M = −16 e−3 y − 2 e2 x, N =
8 e−3 y + 5 e2 x

Integrating Factor Q(x). Report an
implicit solution U(x, y) = c for the
given equation, using an integrating
factor Q = Q(x). Follow Example ??,
page ??.

51. (x+ 2y)dx+ (x− x2)dy = 0

52. (x+ 3y)dx+ (x− x2)dy = 0

53. (2x+ y)dx+ (x− x2)dy = 0

54. (2x+ y)dx+ (x+ x2)dy = 0

55. (2x+ y)dx+ (2x+ x2)dy = 0

56. (x+ y)dx+ (2x+ x2)dy = 0

57. (x+ y)dx+ (3x+ x2)dy = 0

58. (x+ y)dx+ (3x+ 5x2)dy = 0

59. (x+ y)dx+ (3x)dy = 0

60. (x+ y)dx+ (7x)dy = 0

Integrating Factor Q(y).

61. (y − y2)dx+ (x+ y)dy = 0

62. (y − y2)dx+ (2x+ y)dy = 0

63. (y − y2)dx+ (2x+ 3y)dy = 0

64. (y + y2)dx+ (2x+ 3y)dy = 0

65. (y + y2)dx+ (5x+ 3y)dy = 0

66. (y + 5y2)dx+ (5x+ 3y)dy = 0

67. (2y + 5y2)dx+ (5x+ 3y)dy = 0

68. (2y + 5y2)dx+ (7x+ 11y)dy = 0

69. (2y + 5y3)dx+ (3x+ 7y)dy = 0

70. (3y + 5y3)dx+ (7x+ 9y)dy = 0


