2.9 Exact Equations and Level Curves

A level curve or a conservation law is an equation of the form

$$U(x,y) = c.$$

Hikers like to think of U as the *altitude* at position (x, y) on the map and U(x, y) = c as the *curve* which represents the easiest walking path, that is, altitude does not change along that route. The altitude is **conserved** along the route, hence the terminology *conservation law*.

Other examples of level curves are *isobars* and *isotherms*. An **isobar** is a planar curve where the atmospheric pressure is constant. An **isotherm** is a planar curve along which the temperature is constant.

Definition 3 (Potential)

The function U(x, y) in a conservation law is called a **potential**. The **dynamical equation** is the first order differential equation

(1)
$$Mdx + Ndy = 0, \quad M = U_x(x, y), \quad N = U_y(x, y).$$

The dynamics or changes in x and y are described by (1). To solve Mdx + Ndy = 0 means this: find a conservation law U(x, y) = c so that (1) holds. Formally, (1) is found by *implicit differentiation* of U(x, y) = c; see *Technical Details*, page 154.

The Potential Problem and Exactness

The **potential problem** assumes given a dynamical equation Mdx + Ndy = 0 and seeks to find a potential U(x, y) from the set of equations

(2)
$$U_x = M(x, y), U_y = N(x, y).$$

If some potential U(x, y) satisfies equation (2), then Mdx + Ndy = 0 is said to be **exact**. It is a consequence of the mixed partial equality $U_{xy} = U_{yx}$ that the existence of a solution U implies $M_y = N_x$. Surprisingly, this condition is also sufficient.

Theorem 5 (Exactness)

Let M(x, y), N(x, y) and their first partials be continuous in a rectangle D. Assume $M_y(x, y) = N_x(x, y)$ in D and (x_0, y_0) is a point of D. Then the equation Mdx + Ndy = 0 is exact with potential U given by the formula

(3)
$$U(x,y) = \int_{x_0}^x M(t,y)dt + \int_{y_0}^y N(x_0,s)ds.$$

The proof is delayed to page 154.

The Method of Potentials

Formula (3) has technical problems because it requires two integrations. The integrands have a *parameter*: they are *parametric integrals*. Integration effort can be reduced by using the **method of potentials** for Mdx + Ndy = 0, which applies equation (3) with $x_0 = y_0 = 0$ in order to simplify integrations.

Test $M_y = N_x$	Compute the partials M_y and N_x , then test the equality $M_y = N_x$. Proceed if equality holds.
Trial Potential	Let $U = \int_0^x M(x,y) dx + \int_0^y N(0,y) dy$. Evaluate both integrals.
Test $U(x,y)$	Compute U_x and U_y , then test both $U_x = M$ and $U_y = N$. This step finds integration errors.

Examples

40 Example (Exactness Test) Test Mdx + Ndy = 0 for the existence of a potential U, given $M = 2xy + y^3 + y$ and $N = x^2 + 3xy^2 + x$,

Solution: Theorem 5 implies that Mdx + Ndy = 0 has a potential U exactly when $M_y = N_x$. It suffices to compute the partials and show they are equal.

$$M_y = \partial_y (2xy + y^3 + y) \qquad N_x = \partial_x (x^2 + 3xy^2 + x) = 2x + 3y^2 + 1, \qquad = 2x + 3y^2 + 1.$$

41 Example (Conservation Law Test) Test whether $U = x^2y + xy^3 + xy$ is a potential for Mdx + Ndy = 0, given $M = 2xy + y^3 + y$, $N = x^2 + 3xy^2 + x$.

Solution: By definition, it suffices to test the equalities $U_x = M$ and $U_y = N$.

$$\begin{array}{ll} U_x = \partial_x (x^2 y + x y^3 + x y) & & U_y = \partial_y (x^2 y + x y^3 + x y) \\ = 2 x y + y^3 + y & & = x^2 + 3 x y^2 + x \\ = M, & & = N. \end{array}$$

42 Example (Method of Potentials) Solve $y' = -\frac{2xy + y^3 + y}{x^2 + 3xy^2 + x}$.

Solution: The implicit solution $x^2y + xy^3 + xy = c$ will be justified.

The equation has the form Mdx + Ndy = 0 where $M = 2xy + y^3 + y$ and $N = x^2 + 3xy^2 + x$. It is exact, by Theorem 5, because the partials $M_y = 2x + 3y^2 + 1$ and $N_x = 2x + 3y^2 + 1$ are equal.

The method of potentials applies to find the potential $U = x^2y + xy^3 + xy$ as follows.

$$U = \int_0^x M(x, y) dx + \int_0^y N(0, y) dy$$
 Formula for U , Theorem 5.

$= \int_0^x \left(2xy + y^3 + y \right) dx + \int_0^y (0) dy$	Insert M and N .
$=x^2y+xy^3+xy$	Evaluate integral.

Observe that N(x, y) simplifies to zero at x = 0, which reduces the actual work in half. Any choice other than $x_0 = 0$ in Theorem 5 increases the labor.

To test the solution, compute the partials of U, then compare them to M and N; see Example 41.

43 Example (Exact Equation) Solve $\frac{x+y}{(1-x)^2}dx + \frac{x}{1-x}dy = 0.$

Solution: The implicit solution $\frac{xy+x}{1-x} + \ln |x-1| = c$ will be justified.

Assume given the exactness of the equation Mdx + Ndy = 0, where $M = (x+y)/(1-x)^2$ and N = x/(1-x). Apply Theorem 5:

$$\begin{split} U &= \int_0^x M(x,y) dx + \int_0^y N(0,y) dy & \text{Method of potentials.} \\ &= \int_0^x \frac{x+y}{(1-x)^2} dx + \int_0^y (0) dy & \text{Substitute for } M, N. \\ &= \int_0^x \left(\frac{y+1}{(x-1)^2} + \frac{1}{x-1} \right) dx & \text{Partial fractions.} \\ &= \frac{xy+x}{1-x} + \ln|x-1| & \text{Evaluate integral.} \end{split}$$

Additional examples, including the context for the preceding example, appear in the next section.

Remarks on the Method of Potentials

Indefinite integrals $\int M(x, y)dx$ and $\int N(0, y)dy$ can be used, provided the two integration answers are zero at x = 0 and y = 0, respectively. Swapping the roles of x and y gives $U = \int_0^y N(x, y)dy + \int_0^x M(x, 0)dx$, a form which may have easier integrations.

Can the test $M_y = N_x$ be skipped? True, it is enough to verify that the potential works (the last step). If the last step fails, then the first step must be done to resolve the error.

The equation ydx + 2xdy = 0 fails $M_y = N_x$ and the trial potential U = xy fails $U_x = M$, $U_y = N$. In the equivalent form $x^{-1}dx + 2y^{-1}dy = 0$, the method of potentials does not apply directly, because (0,0) is outside the domain of continuity. Nevertheless, the trial potential $U = \ln x + 2 \ln y$ passes the test $U_x = M$, $U_y = N$. Such pleasant accidents account for the popularity of the method of potentials.

It is prudent in applications of Theorem 5 to test $x_0 = y_0 = 0$ in M and N, to detect a discontinuity. If detected, then another vertex x_0 , y_0 of the unit square, e.g., $x_0 = y_0 = 1$, might suffice.

Details and Proofs

Justification of equation (1) uses the calculus *chain rule*

$$\frac{d}{dt}U(x(t), y(t)) = U_x(x(t), y(t))x'(t) + U_y(x(t), y(t))y'(t)$$

and differential notation dx = x'(t)dt, dy = y'(t)dt. To justify (1), let (x(t), y(t)) be some parameterization of the level curve, then differentiate on t across the equation U(x(t), y(t)) = c and apply the chain rule.

Proof of Theorem 5

Background result. The proof assumes the following identity:

$$\frac{\partial}{\partial y} \int_{x_0}^x M(t, y) dt = \int_{x_0}^x M_y(t, y) dt.$$

The identity is obtained by forming the Newton quotient (G(y+h)-G(y))/h for the derivative of $G(y) = \int_{x_0}^x M(t, y) dt$ and then taking the limit as h approaches zero. Technically, the limit must be taken inside an integral sign, which for success requires continuity of the partial M_y .

Details. It has to be shown that the implicit relation U(x, y) = c with U defined by (3) is a solution of the exact equation Mdx + Ndy = 0, that is, the relations $U_x = M$, $U_y = N$ hold. The partials are calculated from the background result as follows.

$$\begin{array}{ll} U_x = \partial_x \int_{x_0}^x M(t,y) dt & \qquad \text{Use (3), in which the second integral does} \\ & \qquad \text{not depend on } x. \\ = M(x,y), & \qquad \text{Fundamental theorem of calculus.} \\ U_y = \partial_y \int_{x_0}^x M(t,y) dt & \qquad \text{Use (3).} \\ & \qquad + \partial_y \int_{y_0}^y N(x_0,s) ds & \qquad \\ = \int_{x_0}^x M_y(t,y) dt + N(x_0,y) & \qquad \text{Apply the background result and the fundamental theorem.} \\ = \int_{x_0}^x N_x(t,y) dt + N(x_0,y) & \qquad \text{Substitute } M_y = N_x. \\ = N(x,y) & \qquad \text{Fundamental theorem of calculus.} \end{array}$$

The verification is complete.

Power Series Proof of Theorem 5 It will be assumed that M and N have power series expansions about x = y = 0. Let $U_1 = \int M(x, y) dx$ and $U_2 = \int N(x, y) dy$ with $U_1(0, y) = U_2(x, 0) = 0$. The series forms of U_1 and U_2 will be $U_1 = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_j x_j^{i} + \sum_{j=1}^{\infty} a_j x_j^{j}$

$$U_{1} = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} c_{ij} x^{i} y^{j} + \sum_{i=1}^{\infty} a_{i} x^{i},$$
$$U_{2} = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} d_{ij} x^{i} y^{j} + \sum_{j=1}^{\infty} b_{j} y^{j}.$$

The identities $\partial_y \partial_x U_1 = M_y = N_x = \partial_x \partial_y U_2$ imply that $c_{ij} = d_{ij}$, using term-by-term differentiation. The trial potential is $U = U_1 + \sum_{j=1}^{\infty} b_j y^j$ or $U = U_2 + \sum_{i=1}^{\infty} a_i x^i$. From these relations it follows that $U_x = M$ and $U_y = N$. Therefore, Mdx + Ndy = 0 is exact with potential U.

A Popular Method. The power series proof justifies this method: the potential U is the sum of $\int M dx$ and the terms from $\int N dy$ which do not appear in $\int M dx$.

Simplifications of the integrand in $\int N(0, y) dy$, due to x = 0, suggest that $\int N(x, y) dy$ might involve more labor. Examples show that this insight is correct.

Exercises 2.9

Exactness Test. Test the equality $M_y = N_x$ for the given equation, as written, and report *exact* when true. Do not try to solve the differential equation. See Example 40, page 152.

- 1. (y-x)dx + (y+x)dy = 0
- **2.** (y+x)dx + (x-y)dy = 0
- **3.** $(y + \sqrt{xy})dx + (-y)dy = 0$
- 4. $(y + \sqrt{xy})dx + xydy = 0$
- 5. $(x^2 + 3y^2)dx + 6xydy = 0$
- 6. $(y^2 + 3x^2)dx + 2xydy = 0$
- 7. $(y^3 + x^3)dx + 3xy^2dy = 0$
- 8. $(y^3 + x^3)dx + 2xy^2dy = 0$
- 9. $2xydx + (x^2 y^2)dy = 0$
- **10.** $2xydx + (x^2 + y^2)dy = 0$

Conservation Law Test. For each given conservation law U(x, y) = c, report whether or not it is a solution to Mdx + Ndy = 0. See Example 41, page 152.

- 11. $2xydx + (x^2 + 3y^2)dy = 0,$ $x^2y + y^3 = c$
- **12.** $2xydx + (x^2 3y^2)dy = 0,$ $x^2y - y^3 = c$
- **13.** $(3x^2 + 3y^2)dx + 6xydy = 0,$ $x^3 + 3xy^2 = c$
- 14. $(x^2 + 3y^2)dx + 6xydy = 0,$ $x^3 + 3xy^2 = c$
- **15.** (y-2x)dx + (2y+x)dy = 0, $xy - x^2 + y^2 = c$

16. (y+2x)dx + (-2y+x)dy = 0, $xy + x^2 - y^2 = c$

Exactness Theorem. Apply the exactness Theorem 5 and possibly the method of potentials to find an implicit solution U(x, y) = c for the given differential equation. See Examples 42-43, page 152.

- 17. (y 4x)dx + (4y + x)dy = 018. (y + 4x)dx + (4y + x)dy = 019. $(e^y + e^x)dx + (xe^y)dy = 0$ 20. $(e^{2y} + e^x)dx + (2xe^{2y})dy = 0$ 21. $(1 + ye^{xy})dx + (2y + xe^{xy})dy = 0$ 22. $(1 + ye^{-xy})dx + (xe^{-xy} - 4y)dy = 0$ 23. $(2x + \arctan y)dx + \frac{x}{1 + y^2}dy = 0$
- **24.** $(2x + \arctan y)dx + \frac{x+2y}{1+y^2}dy = 0$

$$25. \ \frac{2x^5 + 3y^3}{x^4y}dx - \frac{2y^3 + x^5}{x^3y^2}dy = 0$$

26.
$$\frac{2x^4 + y^2}{x^3y}dx - \frac{2x^4 + y^2}{2x^2y^2}dy = 0$$

- **27.** $Mdx + Ndy = 0, M = e^x \sin y + \tan y, N = e^x \cos y + x \sec^2 y$
- **28.** $Mdx + Ndy = 0, M = e^x \cos y + \tan y, N = -e^x \sin y + x \sec^2 y$

29.
$$(x^2 + \ln y) dx + (y^3 + x/y) dy = 0$$

30. $(x^3 + \ln y) dx + (y^3 + x/y) dy = 0$

2.10 Special equations

Homogeneous-A Equation

A first order equation of the form y' = F(y/x) is called a **homogeneous** class A equation. The substitution u = y/x changes it into an equivalent first order separable equation xu' + u = F(u). Solutions of y' = F(y/x) and xu' + u = F(u) are related by the relation y = xu.

Homogeneous-C Equation

Let R(x, y) be a rational function constructed from two affine functions:

$$R(x,y) = \frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}$$

A first order equation of the form y' = G(R(x, y)) is called a **homogeneous class C equation**. If the system

$$a_1a + b_1b = c_1, \quad a_2a + b_2b = c_2$$

has a solution (a, b), then the change of variables x = X - a, y = Y - b effectively eliminates the terms c_1 and c_2 . Accordingly, the equation y' = G(R(x, y)) converts into a homogeneous class A equation

$$Y' = G\left(\frac{a_1 + b_1 Y/X}{a_2 + b_2 Y/X}\right)$$

This equation type was solved in the previous paragraph. Justification follows from y' = Y' and $R(X - a, Y - b) = (a_1X + b_1Y)/(a_2X + b_2Y)$.

Bernoulli's Equation

The equation $y' + p(x)y = q(x)y^n$ is called the **Bernoulli differential** equation. If n = 1 or n = 0, then this is a linear equation. Otherwise, the substitution $u = y/y^n$ changes it into the linear first order equation u' + (1 - n)p(x)u = (1 - n)q(x).

Integrating Factors and Exact Equations

An equation $\mathbf{M}dx + \mathbf{N}dy = 0$ is said to have an integrating factor Q(x, y) if multiplication across the equation by Q produces an exact equation Mdx + Ndy = 0. The definition implies $M = Q\mathbf{M}$, $N = Q\mathbf{N}$ and $M_y = N_x$. The search for Q is only interesting when $\mathbf{M}_y \neq \mathbf{N}_x$.

A systematic approach to finding Q includes a list of **trial integrating** factors, which are known to work for special equations:

$Q = x^a y^b$	Require $xy \left(M_y - N_x ight) = ay N - bx M$. This integrat-
	ing factor can introduce extraneous solutions $x = 0$
	or $y = 0$.
$Q = e^{ax+by}$	Require $\mathbf{M}_y - \mathbf{N}_x = a\mathbf{N} - b\mathbf{M}$.
$Q = e^{\int \mu(x) dx}$	Require $\mu = \left(\mathbf{M}_y - \mathbf{N}_x \right) / N$ to be independent of y .
$Q = e^{\int \nu(y) dy}$	Require $ u = \left(\mathbf{N}_x - \mathbf{M}_y \right) / M$ to be independent of x .

Examples

44 Example (Homogeneous-A) Solve $yy' = 2x + y^2/x$

Solution: The *implicit solution* will be shown to be

$$y^2 = cx^2 + 4x^2 \ln x.$$

The equation $yy' = 2x + y^2/x$ is not separable, linear nor exact. Division by y gives the homogeneous-A form y' = 2/u + u where u = y/x. Then

xu' + u = 2/u + u	Form $xu' + u = F(u)$.
xu' = 2/u	Separable form.
$u^2 = c + 4\ln x$	Implicit solution u .
$y^2 = x^2 u^2$	Change of variables $y = xu$.
$= cx^2 + 4x^2 \ln x$	Substitute $u^2 = c + 4 \ln x$.

Check the implicit solution against $yy' = 2x + y^2/x$ as follows.

LHS = yy'	Left side of $yy' = 2x + y^2/x$.
$= \frac{1}{2}(y^2)'$	Calculus identity.
$= \frac{1}{2}(cx^2 + 4x^2\ln x)'$	Substitute.
$= cx + 4x\ln x + 2x$	Differentiate.
$= 2x + y^2/x$	Use $y^2 = cx^2 + 4x^2 \ln x$.
= RHS.	Equality verified.

45 Example (Homogeneous-C) Solve $y' = \frac{x+y+3}{x-y+5}$.

Solution: The *implicit solution* will be shown to be

$$2\ln(x+4) + \ln\left(\left(\frac{y-1}{x+4}\right)^2 + 1\right) - 2\arctan\left(\frac{y-1}{x+4}\right) = c.$$

The equation would be of type homogeneous-A, if not for the constants 3 and 5 in the fraction (x + y + 3)/(x - y + 5). The method applies a translation of coordinates x = X - a, y = Y - b as below.

x + y + 3 = X + Y, Require the translation to remove the conx - y + 5 = X - Y stant terms.

$\begin{array}{rcl} 3 & = & a+b, \\ 5 & = & a-b \end{array}$	Substitute $X = x+a$, $Y = y+b$ and simplify.
a = 4, b = -1	Unique solution of the system.
$\frac{dY}{dX} = \frac{X+Y}{X-Y}$	Translated type homogeneous-A equation.
$X\frac{du}{dX} + u = \frac{1+u}{1-u}$	Use $u = Y/X$ to eliminate Y .
$\frac{1-u}{1+u^2}\frac{du}{dX} = \frac{1}{X}$	Separated form.

The separated form is integrated as $\int du/(1+u^2) - \int u du/(1+u^2) = \int dX/X$. Evaluation gives the implicit solution

$$\arctan(u) - \frac{1}{2}\ln(u^2 + 1) = C + \ln X.$$

Changing variables x = X - 4, y = Y + 1 and consolidating constants produces the announced solution.

To check the solution by maple assist, use the following code, which tests U(x,y) = c against y' = f(x,y). The test succeeds if odetest returns zero.

Maple V 5.1 U:=(x,y)->2*ln(x+4)+ln(((y-1)/(x+4))^2+1)-2*arctan((y-1)/(x+4)); f:=(x,y)->(x+y+3)/(x-y+5); DE:=diff(y(x),x)=f(x,y(x)); odetest(U(x,y(x))=c,DE);

46 Example (Bernoulli) Solve $y' + 2y = y^2$.

Solution: It will be shown that the solution is $y = \frac{1}{1 + Ce^x}$.

The equation can be solved by other methods, notably separation of variables. Bernoulli's substitution $u = y/y^n$ will be applied to find the equivalent first order linear differential equation, as follows.

$u' = (y/y^2)'$	Bernoulli's substitution, $n = 2$.
$=-y^{-2}y'$	Chain rule.
$= -1 + y^{-1}$	Use $y' + 2y = y^2$.
= -1 + u	Use $u = y/y^2$.

This linear equation u' = -1 + u has equilibrium solution $u_p = 1$ and homogeneous solution $u_h = Ce^x$. Therefore, $u = u_h + u_p$ gives $y = u^{-1} = 1/(1 + Ce^x)$.

47 Example ($Q = x^a y^b$ **)** Solve $(3y + 4xy^2)dx + (4x + 5x^2y)dy = 0$.

Solution: The implicit solution $x^3y^4 + x^4y^5 = c$ will be justified.

The equation is not exact as written. To explain why, let $\mathbf{M} = 3y + 4xy^2$ and $\mathbf{N} = 4x + 5x^2y$. Then $\mathbf{M}_y = 8xy + 3$, $\mathbf{N}_x = 10xy + 4$ which implies $\mathbf{M}_y \neq \mathbf{N}_x$ (not exact).

The factor $Q = x^a y^b$ will be an integrating factor for the equation provided a and b are chosen to satisfy $xy (\mathbf{M}_y - \mathbf{N}_x) = ay\mathbf{N} - bx\mathbf{M}$. This requirement becomes $xy (-2xy - 1) = ay(4x + 5x^2y) - bx(3y + 4xy^2)$. Comparing terms across the equation gives the 2×2 system of equations

The unique solution by Cramer's determinant rule is

$$a = \frac{\begin{vmatrix} -1 & -3 \\ -2 & -4 \end{vmatrix}}{\begin{vmatrix} 4 & -3 \\ 5 & -4 \end{vmatrix}} = 2, \quad b = \frac{\begin{vmatrix} 4 & -1 \\ 5 & -2 \end{vmatrix}}{\begin{vmatrix} 4 & -3 \\ 5 & -4 \end{vmatrix}} = 3.$$

Then $Q = x^2 y^3$ is the required integrating factor. After multiplication by Q, the original equation becomes the exact equation

$$(3x^2y^4 + 4x^3y^5)dx + (4x^3y^3 + 5x^4y^4)dy = 0$$

The method of potentials applied to $M = 3x^2y^4 + 4x^3y^5$ and $N = 4x^3y^3 + 5x^4y^4$ finds the potential U as follows.

$$\begin{split} U &= \int_0^x M(x,y) dx + \int_0^y N(0,y) dy & \text{Method of potentials formula.} \\ &= \int_0^x (3x^2y^4 + 4x^3y^5) dx + \int_0^y (0) dy & \text{Insert } M \text{ and } N. \\ &= x^3y^4 + x^4y^5 & \text{Evaluate integral.} \end{split}$$

48 Example (
$$Q = e^{ax+by}$$
) Solve $(e^x + e^y) dx + (e^x + 2e^y) dy = 0$

Solution: The implicit solution $2e^{3x+3y} + 3e^{2x+4y} = c$ will be justified. A constant 5/6 appears in the integrations below, mysteriously absent in the solution, because 5/6 has been absorbed into the constant c.

Let $\mathbf{M} = e^x + e^y$ and $\mathbf{N} = e^x + 2e^y$. Then $\mathbf{M}_y = e^y$ and $\mathbf{N}_x = e^x$ (not exact). The condition for $Q = e^{ax+by}$ to be an integrating factor is $\mathbf{M}_y - \mathbf{N}_x = a\mathbf{N} - b\mathbf{M}$, which becomes the requirement

$$e^{y} - e^{x} = a \left(e^{x} + 2e^{y} \right) - b \left(e^{x} + e^{y} \right).$$

The equations are satisfied provided (a, b) is a solution of the 2×2 system of equations

$$a - b = -1,$$

 $2a - b = 1,$

The unique solution is a = 2, b = 3, by elimination. The original equation multiplied by the integrating factor $Q = e^{2x+3y}$ is the exact equation Mdx + Ndy = 0, where $M = e^{3x+3y} + e^{2x+4y}$ and $N = e^{3x+3y} + 2e^{2x+4y}$. The method of potentials applies to find the potential U, as follows.

$$\begin{split} U &= \int_0^x M(x,y) dx + \int_0^y N(0,y) dy & \text{Method of potentials.} \\ &= \int_0^x \left(e^{3x+3y} + e^{2x+4y} \right) dx + \int_0^y \left(e^{3y} + 2e^{4y} \right) dy & \text{Insert } M \text{ and } N. \\ &= \frac{1}{3} e^{3x+3y} + \frac{1}{2} e^{2x+4y} - \frac{5}{6} & \text{Evaluate integral.} \end{split}$$

Solution: The implicit solution $\frac{xy+x}{1-x} + \ln |x-1| = c$ will be justified. Let $\mathbf{M} = x + y$, $\mathbf{N} = x - x^2$. Then $\mathbf{M}_y = 1$ and $\mathbf{N}_x = 1 - 2x$ (not exact). Then $\mu = \frac{\mathbf{M}_y - \mathbf{N}_x}{\mathbf{N}}$ Hope μ depends on x alone. = 2/(1-x) Substitute \mathbf{M} , \mathbf{N} ; success. $Q = e^{\int \mu(x)dx}$ Integrating factor. $= e^{-2\ln|1-x|}$ Substitute for μ and integrate. $= (1-x)^{-2}$ Simplified factor found.

Multiplication of $\mathbf{M}dx + \mathbf{N}dy = 0$ by Q gives the corresponding exact equation

$$\frac{x+y}{(1-x)^2}dx + \frac{x}{1-x}dy = 0.$$

The method of potentials applied to $M = (x+y)/(1-x)^2$, N = x/(1-x) finds the implicit solution as follows.

$$\begin{split} U &= \int_0^x M(x,y) dx + \int_0^y N(0,y) dy & \text{Method of potentials.} \\ &= \int_0^x \frac{x+y}{(1-x)^2} dx + \int_0^y (0) dy & \text{Substitute for } M, N. \\ &= \int_0^x \left(\frac{y+1}{(x-1)^2} + \frac{1}{x-1} \right) dx & \text{Partial fractions.} \\ &= \frac{xy+x}{1-x} + \ln|x-1| & \text{Evaluate integral.} \end{split}$$

50 Example (Q = Q(y)**)** Solve $(y - y^2)dx + (x + y)dy = 0$.

Solution: Interchange the roles of x and y, then apply the previous example, to obtain the implicit solution $\frac{xy+y}{1-y} + \ln|y-1| = c$.

This example happens to fit the case when the integrating factor is a function of y alone. The details parallel the previous example.

Details and Proofs

The exactness condition $M_y = N_x$ for $M = Q\mathbf{M}$ and $N = Q\mathbf{N}$ becomes in the case $Q = x^a y^b$ the relation

$$bx^ay^{b-1}\mathbf{M} + x^ay^b\mathbf{M}_y = ax^{a-1}y^b\mathbf{N} + x^ay^b\mathbf{N}_x$$

from which rearrangement gives $xy (\mathbf{M}_y - \mathbf{N}_x) = ay\mathbf{N} - bx\mathbf{M}$. The case $Q = e^{ax+by}$ is similar.

Consider $Q = e^{\int \mu(x)dx}$. Then $Q' = \mu Q$. The exactness condition $M_y = N_x$ for $M = Q\mathbf{M}$ and $N = Q\mathbf{N}$ becomes $Q\mathbf{M}_y = \mu Q\mathbf{N} + Q\mathbf{N}_x$ and finally

$$\mu = \frac{\mathbf{M}_y - \mathbf{N}_x}{\mathbf{N}}.$$

The similar case $Q = e^{\int \nu(y) dy}$ is obtained from the preceding case, by swapping the roles of x, y.

Exercises 2.10

Homogeneous-A Equations. Find fsuch that the equation can be written in the form y' = f(y/x), then solve for y. Check the answer using a computer algebra system.

1. $xy' = y^2/x$

2.
$$x^2y' = x^2 + y^2$$

- **3.** $yy' = \frac{xy^2}{x^2 + y^2}$
- 4. $yy' = \frac{2xy^2}{4x^2 + y^2}$
- 5. $y' = \frac{y^2}{4x^2 + y^2}$
- 6. $y' = \frac{y^2}{x^2 + y^2}$

7.
$$y' = \frac{y^2}{(x+y)^2}$$

8. $y' = \frac{xy}{(x+y)^2}$

9.
$$y' = \frac{y(y^2 + 4yx + 5x^2)}{x(y + 2x)^2}$$

10.
$$y' = \frac{y'(y+x)^2}{x(y+x)^2}$$

Homogeneous-C Equations.

Decompose f = G(R(x, y)) where $R(x, y) = \frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}$, then solve y' = f(x, y). **11.** $y' = \frac{(y+1)x}{y^2 + 2y + 1 + x^2}$ **12.** $y' = 2 \frac{(y+1)x}{4y^2 + 8y + 4 + x^2}$ **13.** $y' = \frac{(x+1)^2}{4y^2 + x^2 + 2x + 1}$

14.
$$y' = \frac{(x+1)}{(x+1+y)^2}$$

15.
$$y' = \frac{(y+x)(x+1)}{(2x+1+y)^2}$$

16. $y' = \frac{x(2y^2+6yx+5x^2)}{(y+x)(y+2x)^2}$
17. $y' = \frac{(y+x)(3y^2+6yx+2y+3x^2+2x)}{(x+1+y)(2y+2x+1)^2}$
18. $y' = \frac{(y+2x)^2}{x^2}$
19. $y' = \frac{(2y+x)^2}{y^2}$
20. $y' = \frac{x^2}{(y+4x)^2}$

Bernoulli's Equation. Identify the exponent *n* in Bernoulli's equation $y' + p(x)y = q(x)y^n$ and solve for y(x). 21. $u^{-2}u' = 1 + x$

21.
$$y'' y' = 1 + x$$

22. $yy' = 1 + x$
23. $y^{-2}y' + y^{-1} = 1 + x$
24. $yy' + y^2 = 1 + x$
25. $y' + y = y^{1/3}$
26. $y' + y = y^{1/5}$
27. $y' - y = y^{-1/2}$
28. $y' - y = y^{-1/3}$
29. $yy' + y^2 = e^x$
30. $y' + y = e^{2x}y^2$

Integrating Factor $x^a y^b$. Report an implicit solution for the given equation Mdx + Ndy = 0, using an integrating factor $Q = x^a y^b$. Follow Example ??, page ??.

31.
$$M = 3xy - 6y^2$$
, $N = 4x^2 - 15xy$

32.
$$M = 3xy - 10y^2$$
, $N = 4x^2 - 25xy$
33. $M = 2y - 12xy^2$, $N = 4x - 20x^2y$
34. $M = 2y - 21xy^2$, $N = 4x - 35x^2y$
35. $M = 3y - 32xy^2$, $N = 4x - 40x^2y$
36. $M = 3y - 20xy^2$, $N = 4x - 25x^2y$
37. $M = 12y - 30x^2y^2$, $N = 12x - 25x^3y$
38. $M = 12y + 90x^2y^2$, $N = 12x + 75x^3y$
39. $M = 15y + 90xy^2$, $N = 12x + 75x^2y$
40. $M = 35y + 30xy^2$, $N = 28x + 25x^2y$.
Integrating Factor e^{ax+by} . Report an implicit solution $U(x, y) = c$ for the given equation $Mdx + Ndy = 0$ using an integrating factor $Q = e^{ax+by}$. Follow Example ??, page ??.
41. $M = e^x + 2e^{2y}$, $N = 4e^x + 5e^{5y}$
42. $M = 3e^x + 2e^y$, $N = 4e^x + 5e^y$
43. $M = 12e^x + 2$, $N = 20e^x + 5$

44. $M = 12 e^x + 2 e^{-y}, N = 24 e^x + 5 e^{-y}$

- **45.** $M = 12 e^{y} + 2 e^{-x}, N = 24 e^{y} + 5 e^{-x}$
- **46.** $M = 12e^{-2y} + 2e^{-x}, N = 12e^{-2y} + 5e^{-x}$
- **47.** $M = 16 e^y + 2 e^{-2x+3y}, N = 12 e^y + 5 e^{-2x+3y}$
- **48.** $M = 16 e^{-y} + 2 e^{-2x-3y}, N = -12 e^{-y} 5 e^{-2x-3y}$
- **49.** $M = -16 2e^{2x+y}$, $N = 12 + 4e^{2x+y}$

50. $M = -16 e^{-3y} - 2 e^{2x}, N = 8 e^{-3y} + 5 e^{2x}$

Integrating Factor Q(x). Report an implicit solution U(x, y) = c for the given equation, using an integrating factor Q = Q(x). Follow Example ??, page ??.

- 51. $(x + 2y)dx + (x x^2)dy = 0$ 52. $(x + 3y)dx + (x - x^2)dy = 0$ 53. $(2x + y)dx + (x - x^2)dy = 0$ 54. $(2x + y)dx + (x + x^2)dy = 0$ 55. $(2x + y)dx + (2x + x^2)dy = 0$ 56. $(x + y)dx + (2x + x^2)dy = 0$ 57. $(x + y)dx + (3x + x^2)dy = 0$ 58. $(x + y)dx + (3x + 5x^2)dy = 0$ 59. (x + y)dx + (3x)dy = 060. (x + y)dx + (7x)dy = 0Integrating Factor Q(y).
- 61. $(y y^2)dx + (x + y)dy = 0$ 62. $(y - y^2)dx + (2x + y)dy = 0$ 63. $(y - y^2)dx + (2x + 3y)dy = 0$ 64. $(y + y^2)dx + (2x + 3y)dy = 0$ 65. $(y + y^2)dx + (5x + 3y)dy = 0$ 66. $(y + 5y^2)dx + (5x + 3y)dy = 0$ 67. $(2y + 5y^2)dx + (5x + 3y)dy = 0$ 68. $(2y + 5y^2)dx + (7x + 11y)dy = 0$ 69. $(2y + 5y^3)dx + (3x + 7y)dy = 0$ 70. $(3y + 5y^3)dx + (7x + 9y)dy = 0$