The Corrected Trial Solution

in the Method of Undetermined Coefficients

- Definition of Related Atoms
- The Basic Trial Solution Method
- Symbols
- Superposition
- Annihilator Polynomial for f(x)
- Annihilator Equation for f(x)
- Correction rule I: The Annihilator Method
- Correction rule II
- Correction rule III
- Definition of function atomRoot
- Correction rule IV

Definition of Related Atoms

Atoms A and B are *related* if and only if their successive derivatives share a common atom. Then x^3 is related to x and x^{101} , while x is unrelated to e^x , xe^x and $x\sin x$. Atoms $x\sin x$ and $x^3\cos x$ are related, but the atoms $\cos 2x$ and $\sin x$ are unrelated.

The Basic Trial Solution Method

The method is outlined here for a second order differential equation ay'' + by' + cy = f(x). The method applies unchanged for *n*th order equations.

- Step 1. Extract all distinct atoms from f(x), f'(x), f''(x), ... to construct a maximal list of k atoms. Multiply these atoms by **undetermined coefficients** d_1, d_2, \ldots, d_k , then add, defining **trial solution** y.
- Step 2. Substitute *y* into the differential equation.

Basic Correction Rule. If some variable d_p is missing in the substituted equation, then step 2 fails. Correct the trial solution as follows. Variable d_p appears in trial solution y as term d_pA , where A is an atom. Multiply A and all its related atoms B by x. The modified expression y is called a **corrected trial solution**. Repeat step 2 until the substituted equation contains all of the variables d_1, \ldots, d_k .

- Step 3. Match coefficients of atoms left and right to write out linear algebraic equations for d_1 , d_2, \ldots, d_k . Solve the equations for the unique solution.
- Step 4. The corrected trial solution y with evaluated coefficients d_1, d_2, \ldots, d_k becomes the particular solution y_p .

Symbols .

The symbols c_1 , c_2 are reserved for use as arbitrary constants in the general solution y_h of the homogeneous equation.

Symbols d_1, d_2, d_3, \ldots are reserved for use in the trial solution y of the non-homogeneous equation. Abbreviations: c = constant, d = determined.

Superposition

The relation $y = y_h + y_p$ suggests solving ay'' + by' + cy = f(x) in two stages:

(a) Find y_h as a linear combination of atoms computed by applying Euler's theorem to factors of $ar^2 + br + c$.

(b) Apply the basic trial solution method to find y_p .

- We expect to find two arbitrary constants c_1 , c_2 in the solution y_h , but in contrast, no arbitrary constants appear in y_p .
- Calling d_1, d_2, d_3, \dots undetermined coefficients is misleading, because in fact they are eventually *determined*.

Annihilator Polynomial q(r) for f(x)

Assume f(x) is a linear combination of atoms. Each atom corresponds to, according to Euler's Theorem, a factor $(r - a - ib)^{k+1}$ of a polynomial. Choose the largest k, over all atoms sharing this factor, and then multiply all maximal factors, taken over all atoms appearing in f(x), to obtain a polynomial q(r). If a complex factor appears in q(r), then multiply q(r) by the conjugate of that factor. Finally, q(r) is real. It is called an *annihilator polynomial* for f(x).

Example: If $f(x) = x + x^2 + \cos x$, then the maximal factors according to Euler's Theorem are r^3 and (r-i). Then $q(r) = r^3(r-i)(r+i)$, because complex factors must appear with their conjugates. Finally, $q(r) = r^3(r^2 + 1)$.

Annihilator Differential Equation Aw = 0 for f(x)

Assume f(x) is a linear combination of atoms and q(r) is an annihilator polynomial for f(x). Then q(r) is the characteristic polynomial of a higher order linear homogeneous equation Aw = 0 and w = f(x) is a particular solution of this differential equation. The equation Aw = 0 is called an *annihilator differential equation* for f(x).

Example: If $f(x) = x + x^2 + \cos x$, then $q(r) = r^3(r^2 + 1) = r^5 + r^3$ and Aw = 0 is the differential equation $w^{(5)} + w^{(3)} = 0$. We verify that f(x) satisfies

$$egin{aligned} A(f) &= f^{(5)} + f^{(3)} \ &= ((x+x^2)^{(5)} + (x+x^2)^{(3)}) + ((\cos x)^{(5)} + (\cos x)^{(3)}) \ &= 0 + 0 \ &= 0. \end{aligned}$$

Correction rule I: The Annihilator Method

The rule computes the corrected trial solution y without having to substitute y into the non-homogeneous differential equation Ly = f.

- Let p(r) be the characteristic polynomial for the homogeneous differential equation Ly = 0, from which we obtain the homogeneous general solution $y_h(x)$.
- Let q(r) be an annihilator polynomial for f(x) and Aw = 0 its annihilator differential equation, so that A(f) = 0. We never need to find Aw = 0 explicitly!
- Multiply p(r) and q(r) to obtain p(r)q(r), which is the characteristic equation of A(Ly) = 0. Then y(x) is a solution of A(Ly) = 0, because A(Ly) =A(f) = 0. Expand y as a linear combination of atoms selected from the maximal factors of p(r)q(r).
- The superposition principle $y(x) = y_h(x) + y_p(x)$ implies the corrected trial solution y(x) is obtained by removal of all atoms shared with $y_h(x)$.

Correction rule II

The rule predicts the corrected trial solution y without having to substitute y into the differential equation.

- Write down y_h , the general solution of homogeneous equation ay'' + by' + cy = 0, having arbitrary constants c_1 , c_2 . Create the corrected trial solution y iteratively, as follows.
- Cycle through each term $d_p A$, where A is a atom. If A is also an atom appearing in y_h , then multiply $d_p A$ and each **related atom** term $d_q B$ by x. Other terms appearing in y are unchanged.
- Repeat until each term $d_p A$ has atom A distinct from all atoms appearing in homogeneous solution y_h . The modified expression y is called the **corrected trial solution**.

Correction rule III

The rule predicts the corrected trial solution y without substituting it into the differential equation. This iterative algebraic method uses the atom list of the homogeneous equation to create y.

- Write down the roots of the characteristic equation. Let L denote the list of distinct atoms for these roots.
- Cycle through each term d_pA , where A is a atom. If A appears in list L, then multiply d_pA and each related atom term d_qB by x. Other terms appearing in y are unchanged.
- Repeat until the atom A in an arbitrary term $d_p A$ of y does not appear in list L.^{*a*} The modified expression y is called the **corrected trial solution**.

^{*a*}The number s of repeats for initial term $d_p A$ equals the multiplicity of the root r which created atom A in list L.

Definition of function atomRoot

- $\operatorname{atomRoot}(x^j e^{rx}) = r$ for r real.
- $\operatorname{atomRoot}(x^j e^{ax} \cos bx) = \operatorname{atomRoot}(x^j e^{ax} \sin bx) = a + ib.$

Correction rule IV

The rule predicts the corrected trial solution y without substituting it into the differential equation. This algebraic method uses the roots of the characteristic equation to correct y.

- Write down the roots of the characteristic equation as a list \boldsymbol{R} , according to multiplicity.
- Subdivide trial solution y into groups G of related atoms, by collecting terms and inserting parentheses.
- If a group G contains an atom A with $r = \operatorname{atomRoot}(A)$ in list R, then multiply all terms of G by x^s , where s is the multiplicity of root r.
- Repeat the previous step for all groups G in y. The modified expression y is called the **corrected trial solution**.