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Math 2250 Maple Project 2: Newton Cooling, Swamp Cooler
Spring 2012

Due date: See the internet due dates.

References: Edwards-Penney 2nd, pages 55–57. Code in maple appears in 2250mapleL2-S2013.txt at URL
http://www.math.utah.edu/~gustafso/. This document: 2250mapleL2-S2013.pdf.

An evaporative cooler, used in low-humidity regions of the United States instead of refrigerated air conditioning.

The Problem and Model. The project is to determine an approximation for the indoor temperature u(t) in a building
equipped with an evaporative cooler. The model uses Newton’s cooling law, insulation data k1, cooler data k2, symbol
k = k1 + k2, a formula for the ambient outside temperature A(t) and a formula for the cooler air temperature C(t) (see
the background section infra):

u′(t) + ku(t) = k1A(t) + k2C(t),
u(0) = u0.

(1)

Assumptions and Notation.

• The inside temperature is the wall thermometer reading u(t), where t is in hours measured from midnight t = 0.

• Symbol u0 is the wall thermometer reading at midnight.

• The model assumes that no heat sources or heat sinks are present inside the building, except for the evaporative
cooler.

• The ambient outside air temperature is called A(t). It varies from a low of m = 60 degrees to a high of M = 98
degrees with the low and high at 3am and 3pm, respectively. Let ω0 = π/12. The ambient temperature model
will be

A(t) =
1

2
(M +m)− 1

2
(M −m) cosω0(t− 3)

= 79− 19 cosω0(t− 3).

Then A(t) satisfies M = maxA(t) = A(15) = 98, m = minA(t) = A(3) = 60 and A(t) is t-periodic of period 24
hours. For use in maple, define a function of two variables

AA:=unapply(79-19*cos (omega* (t-3)),(t,omega));

Maple function AA(t,omega) is useful to maintain the symbol ω in displays.

• The building is assumed insulated, the average insulation factor being represented by a Newton cooling constant
k1, usually 0.2 ≤ k1 ≤ 0.5. The expected temperature change due to insulation is k1(A(t)− u(t)).

• Let C(t) be the evaporative cooler air temperature. During operation, the evaporative cooler is assumed to
deliver air 20% cooler than the ambient temperature, which becomes the assumption C(t) = 0.8A(t). The lower
temperature is due to heat loss from water evaporation. The expected temperature change due to cooler operation
is k2(C(t)− u(t)), where k2 is a Newton cooling constant.



• Symbol k = k1 + k2. Symbol k3 = k1 + 0.8k2.

• Symbol uh(t) = ce−kt denotes the general solution of the homogeneous equation u′ + ku = 0.

• Symbol up(t) stands for a particular solution of u′ + ku = k3A(t).

Problem L2.1. (Solution Formulas for up and u)

Derive by hand, using maple assist for values of integrals, an explicit symbolic formula for up(t). Display a final formula
for u = uh + up which depends only on t, u0, k, k3 and ω. Check your hand answer for u in maple. The only maple

assist in this problem is maple integration and the maple answer check.

Problem L2.2. (Steady-State Periodic Solution)

Derive by hand a formula for the steady-state periodic solution uss of u′+ ku = k3A(t). There is no maple assist in this
problem, it is all done by hand from the answer in L2.1. The results:

uss(t) =
k3
k

(
79− 19k

k2 + ω2
0

(k cosω0(t− 3) + ω0 sinω0(t− 3)

)
,

u(t) = Ce−kt + uss(t),
C = u0 − uss(0).

Problem L2.3. (Indoor-Outdoor Variation)

Compare in a maple graphic oscillations of the indoor temperature u(t) and the outdoor temperature A(t) over a 48-hour
period assuming k1 = 0.32, k2 = 0.5, u0 = 76, ω = π/12. Include in the plot four horizontal lines for the maximum
and minimum temperatures for each of u(t) and A(t). Report the indoor and outdoor temperature variations from this
48-hour plot (max minus min in each case). Report the time delay between the indoor and outdoor temperatures, using
this same plot.

Problem L2.4. (Swamp Cooler)

Assume ω = π/12 and k2 = 0.5. Consider all insulation constants k1 in the range from 0.2 to 0.48. Suppose the inside
temperature is 76 degrees at midnight. Report approximate ranges of hours and insulation constant k1, during the first
72 hours, for which the indoor temperature is at or below 70 degrees. Justify your logic used to find the ranges, in a
short paragraph. Illustrate with a computer graphic.

Staple this page on top of all hand and maple work.
Background, problem notes and sample maple code are on the following pages . . .
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Background

Newton Cooling Model. Newton’s law of cooling is:

The rate of change of a body’s temperature is proportional to the difference between the ambient temperature
and the body’s temperature.

This implies that du/dt is the sum of two rates, one due to the insulation and one due to the evaporative cooler. A
model for the indoor temperature u(t) is given by du/dt = k1(A(t) − u(t)) + k2(C(t) − u(t)), u(0) = u0, which can be
rearranged as

u′(t) + ku(t) = k3A(t), k = k1 + k2, k3 = k1 + 0.8k2, u(0) = u0.(2)

Indoor Temperature u(t). The integrating factor method for linear equations applies to find the general solution by
these steps:

u′ + ku = k3A(t) Copy the differential equation. The integrating factor is W = ekt.

(ektu)′

ekt
= k3A(t) Integrating factor method: replace u′ + ku by (Wu)′/W .

(ektu)′ = k3A(t)ekt Clear fractions.

ektu = u0 +
∫ t

0
k3A(x)ekx dx Integrate both sides with respect to t. Apply the Fundamental Theorem of

Calculus. Use u(0) = u0.

u = u0e
−kt + e−kt

∫ t

0
k3A(x)ekx dx Divide to isolate the explicit solution u.

Let uh(t) = u0e
−kt, which is a solution of u′ + ku = 0. Let up(t) = k3e

−kt ∫ t

0
ekxA(x)dx, a particular solution of the

nonhomogeneous differential equation u′ + ku = k3A(t). Then the indoor temperature u = uh + up depends on the
time t, the initial temperature u0, the insulation constant k1, the evaporative cooler constant k2 and the frequency ω
(which is fixed at π/12). Because k = k1 + k2 and k3 = k1 + 0.8 ∗ k2, then write u = u(t, u0, k, k3, ω) to emphasize the
dependence. In maple, advantages exist for adding the variable name ω, which is later set equal to value ω0 = π/12.

Write u as U(t,u0,k,k3,omega) for use in maple.

Steady-state solution. The steady-state solution uss is an expression obtained from the general solution formula
u = uh + up by dropping all terms containing a negative exponential. It depends on t, k, k3 and ω [but not u0]. This
expression is known to be a solution of the differential equation, independent of any arbitrary constants, which represents
the observed temperature after a long time. In short, uss is independent of u0. Theory provides the following result.

Theorem (Unique Periodic Solution) Assume p 6= 0 is a constant and q(x) is continuous and T -periodic

[q(x + T ) = q(x)]. Then the differential equation
dy

dx
+ py = q(x) has a unique T -periodic solution y(x) given

by the initial value

y(0) =
(
epT − 1

)−1 ∫ T

0

eptq(t)dt.
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Problem Notes

Notes on L2.1

A derivation by hand is expected, which parallels the derivation above. The difference is the inclusion of fine details,
including integration results, finally giving a formula for uh and a formula for up. Integration for the up formula is
referenced to an attached maple worksheet appendix. The answer check references a second attached worksheet.

Because many students want to know how to do the integration, based upon a calculus background, more information
is provided here. The integration problem can be solved by hand using the book’s integral table:

up(t) = k3e
−kt

∫ t

0

ekx (79− 19 cos (ω(x− 3))) dx.

A change of variable u = x− 3 allows use of integral table entry
∫
eau cos bu du. The symbol ω will be set to π/12, but

for simplicity, use symbol ω throughout.

You are asked to use maple to evaluate the integral. Its table lookup method is superior to the hand method above,
in that no change of variable is required to obtain the answer. This method is accurate and avoids primary pitfalls in
using a book table. A coding example appears below, which moves the factor k3e

−kt inside the integrand, in order to
automatically perform simplifications.

# maple integral table lookup

unassign(’omega’,’t’,’u0’,’k’,’k1’,’k2’,’k3’,’x’);

integrand:=(79-19*cos(omega*(x-3)))*k3*exp(k*x-k*t);

integral:=int(integrand,x=0..t);

The formulas for uh and up are used again in L2.2 in order to derive the steady-state solution. Your answer for u = uh+up
must contain symbols t, u0, k, k3, omega .

The answer check in maple is organized as follows. The complications of setting ω = π/12 are avoided here by leaving
ω as a symbol, since it does not affect the answer check.

# Test LHS=RHS for u’+ku=k3 A.

unassign(’t’,’C’,’omega’,’k’,’k1’,’k2’,’k3’):

k:=k1+k2:k3:=k1+0.8*k2:

uh:=C*exp(-k*t):

up:=integral: #(explicit answer from L2.1)

myANS:=uh+up:

LHS:=diff(myANS,t)+k*myANS:

RHS:=k3*(79-19*cos(omega*(t-3))):

simplify(expand(LHS-RHS));

A successful test of LHS = RHS produces answer zero, or an expression that reduces to zero.

Notes on L2.2

The steady-state solution is derived from the hand-generated symbolic solution u = uh + up in L2.1 by dropping all
terms that contain the negative exponential factor e−kt. The answer, where ω0 = π/12:

uss =
k3
k

(
79− 19k

k2 + ω2
0

(k cosω0(t− 3) + ω0 sinω0(t− 3))

)
.

To get maple to report the above formula, it is essential to evaluate everything with ω as a symbol, to wit, use in maple

the statement unassign(’omega’): . Beware of writing omega:=Pi/12 , which defines ω to be a constant, unless

you undo the effect immediately afterward. Maple’s unassign can be used to erase assignments.

Maple is unable to evaluate limit(exp(-k*t),t=infinity) as zero, because the expression contains k, an unevaluated

symbol. This is why you are asked to report the steady-state solution manually, by dropping terms from previously

obtained answers. Saying assume(k>0) fixes the limit problem.
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Notes on L2.3

The outside temperature A(t) (AA(t,omega) in maple) and the solution u = U(t, u0, k, k3, ω) obtained in L2.2 can be
coded in maple as follows:

unassign(’t’,’u0’,’k’,’k1’,’k2’,’k3’,’omega’):

AA:=unapply(79-19*cos(omega*(t-3)),(t,omega));

uss := unapply(k3*(79*k^2+79*omega^2-19*k^2*cos(omega*(t-3))-

19*k*omega*sin(omega*(t-3)))/(k*(k^2+omega^2)),(t, k, k3, omega));

uss0:=subs(t=0,uss);

U:=unapply((u0-uss0)*exp(-k*t)+uss,(t,u0,k,k3,omega)):

The two curves plus a horizontal line u = 70 are placed onto the plot by this maple command:

plot({U(t,76,0.32,0.5,Pi/12),AA(t,Pi/12),70},t=0..48);

Missing curves? Probably, the missing curves are defined to contain an unevaluated variable name, like pi instead of

Pi . While Pi is the constant 3.14159, lowercase symbol pi is a variable name: case is significant in maple.

Curves vanish on the printer? Add color=black to the plot command, e.g., plot(sin(x),x=0..Pi,color=black); .

Click a mouse button on the high and low spots in the graphic. Somewhere on the maple worksheet the coordinates of
the click are displayed (look around on the screen!). This method gives decimal approximations to the max and min
values. Use the four values obtained to expand the list of horizontal lines to four lines. The final plot has six curves.

The indoor temperature variation is just the maximum of u minus the minimum of u, as computed from the plot
of u(t). The outdoor temperature variation is computed from the graph of A(t), in the same way.

The time delay between the indoor and outdoor temperatures is computed as |T2 − T1|, where A(T1) = maxA(t)
and u(T2) = maxu(t). Look at the graphic to find sane answers for T1 and T2. See the textbook for a more complete
discussion of the ideas. Beware: T1 and T2 are values for time in the first 72 hours (abscissa values, not ordinate values).
The smallest time delay obtainable from the graphic is to be reported, because the transient solution Ce−kt may affect
the graph of u(t) = Ce−kt + uss(t) for a few hours.

Notes on L2.4

A computer algebra assist for this problem uses maple’s function implicitplot. This function can plot the equation
u(t, 76, k, k3, π/12) = 70 over the domain 0 ≤ t ≤ 72, 0.2 ≤ k1 ≤ 0.48, k = k1 + k2, k3 = k1 + 0.8k2, k2 = 0.5. From this
plot, and the 3D-plot z = u(x, 76, y, k3, π/12), the question is easily answered.

with(plots): unassign(’t’,’u0’,’k’,’k3’,’omega’):

uh:=u0*exp(-k*t):

up:=(the answer from L2.1):

myANS:=uh+up:

U:=unapply(myANS,(t,u0,k,k3,omega));k2:=0.5:

implicitplot(U(t,76,k1+k2,k1+0.8*k2,Pi/12)=70,t=0..72,k1=0.2..0.48);

plot3d({U(t,76,k1+k2,k1+0.8*k2,Pi/12),70},t=0..72,k1=0.2..0.48);

The relation between the 2D implicit plot and the 3D plot is seen by slicing the 3D plot at height z = 70 to obtain a
bread slice parallel to the xy-plane. The implicit plot depicts the bread slice by projection onto the xy-plane. The slice
can be visualized in maple by grabbing the 3D graphic with the mouse, to perform a rotation, which exposes a view of
the underside of the 3D figure. The normal 3D view has the axes reversed, but mouse tools can be used to orient the
3D graphic to match the 2D bread slice.

Zoom in on the implicit plot by using a smaller time domain, suggested by the larger plot. The zoom should narrow in
on a range of k-values and t-values such that the 3D surface is entirely below the plane z = 70. This geometry detects
sub-70◦F in the given range.

Physically, inside temperature 70 degrees or less is reached about a hour after the outside temperature drops low
enough to generate evaporative cooler draft temperatures below 70 degrees. During 72 hours, there are four such inside
temperature drops, verified from the 3D-plot, where z=temperature. Please report each of the four answers in this
format: Sub-70◦F from 0.75 to 10.2 hours, all k. An answer is correct if it is supported by the graphic.
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