
Differential Equations and Linear Algebra
2250-1 at 7:30am on 27 Apr 2012

Instructions. The time allowed is 120 minutes. The examination consists of eight problems, one for each
of chapters 3, 4, 5, 6, 7, 8, 9, 10, each problem with multiple parts. A chapter represents 15 minutes on the
final exam.

Each problem on the final exam represents several textbook problems numbered (a), (b), (c), · · ·. Each chapter
(3 to 10) adds at most 100 towards the maximum final exam score of 800. The final exam grade is reported
as a percentage 0 to 100, as follows:

Final Exam Grade =
Sum of scores on eight chapters

8
.

• Calculators, books, notes, computers and electronic equipment are not allowed.

• Details count. Less than full credit is earned for an answer only, when details were expected. Generally,
answers count only 25% towards the problem credit.

• Completely blank pages count 40% or less, at the whim of the grader.

• Answer checks are not expected and they are not required. First drafts are expected, not complete
presentations.

• Please prepare exactly one stapled package of all eight chapters, organized by chapter. All appended
work for a chapter is expected appear in order. Any work stapled out of order could be missed, due to
multiple graders.

• The graded exams will be in a box outside 113 JWB; you will pick up one stapled package.

• Records will be posted at the Registrar’s web site on WEBCT. Please report recording errors by email.

Final Grade. The final exam counts as two midterm exams. For example, if exam scores earned were 90,
91, 92 and the final exam score is 89, then the exam average for the course is

Exam Average =
90 + 91 + 92 + 89 + 89

5
= 90.2.

Dailies count 30% of the final grade. The course average is computed from the formula

Course Average =
70

100
(Exam Average) +

30

100
(Dailies Average).

Please recycle this page or keep it for your records.



Name 7:30am

Mathematics 2250-1 Sample Final Exam Problems at 7:30am on 27 Apr 2012
Scores

Ch3.

Ch4.

Ch5.

Ch6.

Ch7.

Ch8.

Ch9.

Ch10.

Ch3. (Linear Systems and Matrices) Complete all problems.

[10%] Ch3(a): Check the correct box. Incorrect answers lose all credit.

Part 1. [5%]: True or False:
If the 3× 3 matrices A and B are triangular, then AB is triangular.
Part 2. [5%]: True or False:

If a 3× 3 matrix A has an inverse, then for all vectors ~b,
the equation A~x = ~b has a unique solution ~x.

Answer: False. True.

[40%] Ch3(b): Determine which values of k correspond to a unique solution for the system A~x = ~b
given by

A =

 1 4 k
0 k − 2 k − 3
1 4 3

 , ~b =

 1
−1
k

 .
Answer: There is a unique solution for det(A) 6= 0, which implies k 6= 2 and k 6= 3. Alterna-

tive solution: Elimination methods with swap, combo, multiply give

 1 4 k 1
0 k − 2 0 k − 2
0 0 3− k k − 1

.

Then (2) No solution for k = 3 [signal equation]; (3) Infinitely many solutions for k = 2.

[30%] Ch3(c): Define matrix A and vector ~b by the equations

A =

 −2 3 0
0 −2 4
1 0 −2

 , ~b =

 1
2
3

 .
Find the value of x2 by Cramer’s Rule in the system A~x = ~b.

Answer: x2 = ∆2/∆, ∆2 = det

 −2 1 0
0 2 4
1 3 −2

 = 36, ∆ = det(A) = 4, x2 = 9.

[20%] Ch3(d): Assume A−1 =

(
2 −6
0 4

)
. Find the inverse of the transpose of A.

Answer: Then (AT )−1 = (A−1)T =

((
2 −6
0 4

))T
=

(
2 0
−6 4

)
.

Alternate problems.

[40%] Ch3(alt): This problem uses the identity Aadj(A) = adj(A)A = |A|I, where |A| is the determinant of

matrix A. Symbol adj(A) is the adjugate or adjoint of A. The identity is used to derive the adjugate inverse identity

A−1 = adj(A)/|A|, a topic in Section 3.6 of Edwards-Penney.



Let B be the matrix given below, where ? means the value of the entry does not affect the answer to
this problem. The second matrix is C = adj(B). Report the value of the determinant of matrix C−1B2.

B =


1 −1 ? ?
1 ? 0 0
? 0 2 ?
? 0 0 ?

 , C =


4 4 2 0
−4 4 −2 0

0 0 4 0
0 0 0 4


Answer: The determinant of C−1B2 is |B|2/|C|. Then CB == adj(B)B = |B|I implies
|C||B| = det(|B|I) = |B|4. Because |C| = |B|3, then the answer is 1/|B|. Return to CB = |B|I
and do one dot product to find the value |B| = 8. We report det(C−1B2) = 1/|B| = 1/8.

[25%] Ch3(alt): Assume A is an n× n matrix and that A~x = ~b has a solution for any nonzero vector
~b. Find a basis for the set S of all vectors of the form A~x, where ~x is any vector in Rn.

Answer: The basis could be the columns of the identity matrix.

[30%] Ch3(alt): There are real 2 × 2 matrices A such that A2 = −4I, where I is the identity matrix.
Give an example of one such matrix A and then verify that A2 + 4I = 0.

Answer: Choose any matrix whose characteristic equation is λ2 + 4 = 0. Then A2 + 4I = 0 by
the Cayley-Hamilton theorem.

[20%] Ch3(c3): Display the entry in row 3, column 4 of the adjugate matrix [or adjoint matrix] of

A =


0 2 −1 0
0 0 4 1
1 3 −2 0
0 1 1 0

.

Answer: The answer is the cofactor of A in row 4, column 3 = (−1)7 times minor of A in 4,3
= −2.

Staple this page to the top of all Ch3 work.
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Mathematics 2250-1 Sample Final Exam Problems at 7:30am on 27 Apr 2012

Ch4. (Vector Spaces) Complete all problems.

[20%] Ch4(a): Check the independence tests which apply to prove that 1, x2, x3 are independent in
the vector space V of all functions on −∞ < x <∞.

Wronskian test Wronskian of f1, f2, f3 nonzero at x = x0 implies independence of
f1, f2, f3.

Rank test Vectors ~v1, ~v2, ~v3 are independent if their augmented matrix has
rank 3.

Determinant test Vectors ~v1, ~v2, ~v3 are independent if their square augmented matrix
has nonzero determinant.

Atom test Any finite set of distinct atoms is independent.

Pivot test Vectors ~v1, ~v2, ~v3 are independent if their augmented matrix A has
3 pivot columns.

Answer: The first and fourth apply to the given functions, while the others apply only to fixed
vectors.

[20%] Ch4(b): Give an example of a matrix A with three columns that has rank 2.

Answer: Let ~v1, ~v2 be columns of the identity and let ~v3 be the zero vector. Define A to be
the augmented matrix of these three vectors. Then A has 3 columns and rank 2.

[30%] Ch4(c): Define S to be the set of all vectors ~x in R3 such that x1 + x3 = 0 and x3 + x2 = x1.
Prove that S is a subspace of R3.

Answer: Let A =

 1 0 1
−1 1 1

0 0 0

. Then the restriction equations can be written as A~x = ~0.

Apply the kernel theorem. This is theorem 2 in section 4.2 of Edwards-Penney. Then S is a subspace
of R3. Another possible solution: The kernel theorem (theorem 2 in 4.2, Edwards-Penney) applies,
because the given restriction equations are linear homogeneous algebraic equations. Therefore, S
is a subspace of R3.

[30%] Ch4(d): The 5 × 6 matrix A below has some independent columns. Report the independent
columns of A, according to the Pivot Theorem.

A =


0 0 0 0 0 0
−3 0 0 −2 1 −1
−1 0 0 0 1 0

6 0 0 6 0 3
2 0 0 2 0 1



Answer: Find rref(A) =


1 0 0 0 −1 0
0 0 0 1 1 1/2
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

. The pivot columns are 1 and 4.



Alternate problems.

[30%] Ch4(alt): Apply an independence test to the vectors below. Report independent or depen-
dent. Details count.

~v1 =


−1

1
2
0

 , ~v2 =


3
0
1
0

 , ~v3 =


0
−1
−1

0

 .
Answer: Independent. The rank of the augmented matrix of the three vectors is 3.

[30%] Ch4(alt): Consider the four vectors

~v1 =

 2
1
−3

 , ~v2 =

 1
2
−3

 , ~w1 =

 1
2
−3

 , ~w2 =

 2
−1

0

 .
The subspaces S1 = span{~v1, ~v2} and S2 = span{~w1, ~w2} each have dimension 2 and share a common
vector ~v2 = ~w1. Explain why S1 is not equal to S2.

Answer: Because v1, v2, w2 are independent by the determinant test. This means w2 is not in
S1.

[30%] Ch4(alt): Find a basis of fixed vectors in R4 for the solution space of A~x = ~0, where the 4 × 4
matrix A is given below.

A =


3 −1 1 1
1 −1 1 0
2 0 0 1
1 1 −1 1

 .

Answer: rref(A) =


1 0 0 1/2

0 1 −1 1/2

0 0 0 0

0 0 0 0

, basis =


0
1
1
0

,


−1/2
−1/2

0
1


[20%] (alt): State the subspace criterion and the kernel theorem, which are the two theorems in Chapter
4 which apply to prove that a given set S in a vector space V is a subspace of V .

Answer: (1) A subset S of a vector space V is a subspace of V provided the following three
items hold: (a) The zero vector is in S; (b) If x1, x2 are in S, then x1 + x2 is in S; (c) If x is in
S and c is a constant, then cx is in S. (2) The kernel theorem assumes that V = Rn and S is
the set of solutions for a set of linear homogeneous algebraic equations (i.e., a system A~x = ~0 in
vector-matrix notation). The conclusion is that S is a subspace. Set S is called the kernel of the
system of equations or the kernel of the matrix A. The words nullspace and kernel mean the same
thing.

[25%] Ch4(alt): State (1) the Wronskian test and (2) the sampling test for the independence of two
functions f1(x), f2(x).

Answer: (1) Let W =

(
f1(x) f2(x)
f ′1(x) f ′2(x)

)
. If det(W ) 6= 0 for some x = x0, then the two func-

tions are independent. (2) Choose two sample values x = x1, x2. Let W =

(
f1(x1) f2(x1)
f1(x2) f2(x2)

)
.

If det(W ) 6= 0, then the two functions are independent.



[25%] Ch4(alt): Apply an independence test to the vectors below. Report independent or dependent
.

~v1 =


−1

1
2
0

 , ~v2 =


3
0
1
0

 , ~v3 =


4
−1
−1

0

 .
Answer: The determinant test does not apply directly, but the rank test does apply. The rank
is 2, found by computing the reduced row echelon form or the augmented matrix of the three
vectors. We report dependent.

[25%] Ch4(alt): Apply an independence test and report for which values of x the four vectors are
dependent.

~v1 =


0
2
5
3

 , ~v2 =


2
2
1
0

 , ~v3 =


0
2

4x
3

 , ~v4 =


−2

2
9

2x

 .
Answer: Dependent when 2x = 6, 2x = 5/2, by the determinant test. The vectors are
dependent if and only if the determinant is zero.

[40%] Ch4(alt): Find a 4 × 4 system of linear equations for the constants a, b, c, d in the partial
fractions decomposition below [10%]. Solve for a, b, c, d, showing all RREF steps [25%]. Report the
answers [5%].

4x2 − 12x+ 4

(x− 1)2(x+ 1)2
=

a

x− 1
+

b

(x− 1)2
+

c

x+ 1
+

d

(x+ 1)2

Answer: Clear the fractions, substitute samples for x to get four equations in four unknowns.
Solve the equations. Maybe b = −1, d = 5, a = c = 0?

[40%] Ch4(alt): Find a 4 × 4 system of linear equations for the constants a, b, c, d in the partial
fractions decomposition below [10%]. Solve for a, b, c, d, showing all RREF steps [25%]. Report the
answers [5%].

3x2 − 14x+ 3

(x+ 1)2(x− 2)2
=

a

x+ 1
+

b

(x+ 1)2
+

c

x− 2
+

d

(x− 2)2

Answer: Clear the fractions, substitute samples for x to get four equations in four unknowns.
Solve the equations. Maybe a = −20/27, b = 20/9, c = 20/27, d = −13/9?

Place this page on top of all Ch4 work.
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Ch5. (Linear Equations of Higher Order) Complete all problems.

[20%] Ch5(a): Find the characteristic equation of a higher order linear homogeneous differential equa-
tion with constant coefficients, of minimum order, such that y = 11x2 + 15e−x + 3x cos 2x is a solution.

Answer: The atoms x2, e−x, x cos 2x correspond to roots 0, 0, 0,−1, 2i,−2i, 2i,−2i. The root-
factor theorem of college algebra implies the characteristic polynomial should be r3(r+1)(r2+4)2.

[20%] Ch5(b): Determine a basis of solutions of a homogeneous constant-coefficient linear differential
equation, given it has characteristic equation

r(r2 + r)2((r + 1)2 + 7)2 = 0.

Answer: The roots are 0, 0, 0,−1,−1,−1±
√

7i,−1±
√

7i. By Euler’s theorem, a basis is the set
of atoms for these roots: 1, x, x2, e−x, xe−x, e−x cos(

√
7x), e−x sin(

√
7x), xe−x cos(

√
7x), xe−x sin(

√
7x).

[30%] Ch5(c): Find the steady-state periodic solution for the equation

x′′ + 4x′ + 29x = 200 cos(t).

It is known that this solution equals the undetermined coefficients solution for a particular solution xp(t).
This is because the homogeneous problem has roots with negative real part, which causes limxh(t) = 0
at t =∞.

Answer: Use undetermined coefficients trial solution x = d1 cos t + d2 sin t. Then d1 = 7,
d2 = 1 and xp(t) = 7 cos t+ sin t is the steady-state periodic solution.

[30%] Ch5(d): Determine the shortest trial solution for yp according to the method of undetermined
coefficients. Do not evaluate the undetermined coefficients!

d3y

dx3
− d2y

dx2
= 3x2 + 4 sin 2x+ 5ex

Answer: Let f(x) = 3x2 + 4 sin 2x + 5ex. The atoms in f are x2, sin 2x, ex. The complete
set of distinct atoms appearing in the derivatives f, f ′, f ′′, . . . is 1, x, x2, cos 2x, sin 2x, ex. There
are 6 atoms in this list. A theorem says that the shortest trial solution contains 6 atoms. Break
the 6 atoms into four groups, each with the same base atom: group 1 == 1, x, x2; group 2 ==
cos 2x; group 3 == sin 2x; group 4 == ex. Modify each group, by multiplication by x until the
group contains no solution of the homogeneous equation y(3) − y(2) = 0. Then the four groups
are replaced by group 1∗ == x2, x3, x4; group 2∗ == cos 2x; group 3∗ == sin 2x; group 4∗ ==
xex. The shortest trial solution is a linear combination of these last six atoms.

Alternate problems.

[10%] Ch5(alt): Report the general solution y(x) of the differential equation

3
d3y

dx3
+ 10

d2y

dx2
+ 3

dy

dx
= 0.

Answer: Characteristic equation r(3r + 1)(r + 3) = 0 has roots 0, −1/3, −3. The general
solution y(x) is a linear combination of the atoms 1, e−x/3, e−3x.



[20%] Ch5(alt): Given a damped spring-mass system mx′′(t)+cx′(t)+kx(t) = 0 with m = 2, c = 2+a,
k = 1 + a and a > 0 a symbol, calculate all values of symbol a such that the solution x(t) is over-
damped. Please, do not solve the differential equation!

Answer: The discriminant must be positive. Then (2 + a)2 − 8(1 + a) > 0 or a2 − 4a− 4 > 0.

[40%] Ch5(alt): Assume a ninth order constant-coefficient linear differential equation has characteristic
equation r5(r2 + 4)(r2 + r) = 0. Suppose the right side of the differential equation is

f(x) = x2(x+ 2e−x) + 5 sin 2x+ x cosx+ 7ex

Determine the shortest trial solution for a particular solution yp according to the method of undeter-
mined coefficients. To save time, do not evaluate the undetermined coefficients!

Answer: The homogeneous problem has roots 0, 0, 0, 0, 0, 0,−1,±2i with atoms 1, x, x2, x3, x4, x5, e−x, cos 2x, sin 2x.
The trial solution is constructed initially from f(x) = x3+2x2e−x+5 sin 2x+x cosx+7ex, which
has atom list in 7 groups (1) 1, x, x2, x3; (2) e−x, xe−x, x2e−x; (3) ex; (4) cos 2x; (5) sin 2x; (6)
cosx, x cosx; (7) sinx, x sinx. Conflicts with the homogeneous equation atoms causes a repair
of groups (1), (2), (4), (5), making the new groups (1) x6, x7, x8, x9; (2) xe−x, x2e−x, x3e−x; (3)
ex; (4) x cos 2x; (5) x sin 2x; (6) cosx, x cosx; (7) sinx, x sinx. Then the trial solution is a linear
combination of the 14 atoms in the corrected list.

[20%] Ch5(alt): A particular solution of the differential equation x′′ + 2x′ + 17x = 50 cos(3t) is

x(t) = 4 cos 3t+ 12e−t sin 4t+ 3 sin 3t+ 15e−t cos 4t.

Identify the steady-state solution xss(t) and the transient solution xtr(t).

Answer: The transient solution is the sum of all terms with limit zero. The steady-state is the
sum of the remaining terms. Then xss = 4 cos 3t+ 3 sin 3t and xtr = 12e−t sin 4t+ 15e−t cos 4t.

[15%] Ch5(alt): Find the general solution, given characteristic equation

(r2 + 2r)2(r4 − 4r2)(r2 + 4r + 8) = 0.

Answer: Roots 0, 0, 0, 0,−2,−2,−2, 2,−2±2i, atoms 1, x, x2, x3, e−2x, xe−2x, ex, e−2x cos 2x, e−2x sin 2x,
and y = a linear combination of the atoms.

[25%] Ch5(alt): Using the recipe for higher order constant-coefficient differential equations, write out
the general solutions of the differential equations whose characteristic equations are given below.

1.[12%] r3(r2 − 5r)2(r2 − 25) = 0,
2.[13%] (r − 4)2(r2 + 2r + 3)2(r2 − 16)3 = 0

Answer: 1. Roots = 0, 0, 0, 0, 0, 5, 5, 5,−5, atoms 1, x, x2, x3, x4, e5x, xe5x, x2e5x, e−5x, y = a
linear combination of the atoms. 2. Roots = 2, 2,−2,−2,−1±

√
2, 4, 4, 4,−4,−4,−4. There are

12 atoms e2x, xe2x, e−2x, xe−2x, e−x+
√
2x, e−x−

√
2x, e4x, xe4x, x2e4x, e−4x, xe−4x, x2e−4x. Then

y = a linear combination of the atoms.

[25%] Ch5(alt): Given a damped spring-mass system mx′′(t) + cx′(t) + kx(t) = 0 with m = 10, c = 13
and k = 4, solve the differential equation [20%] and classify the answer as over-damped, critically
damped or under-damped [5%].

Answer: Factor the characteristic equation into (2r + 1)(5r + 4) with distinct real roots
−1/2,−4/5. Then the atoms are e−t/2, e−4t/5 and y = a linear combination of the atoms.
Classified as over-damped.



[50%] Ch5(alt): Determine the shortest trial solution for yp according to the method of undetermined
coefficients. Do not evaluate the undetermined coefficients!

yiv + 9y′′ = x(x+ 2e3x) + 3x cos 3x+ 4e−3x

Answer: The homogeneous problem has roots 0, 0,±3i with atoms 1, x, cos 3x, sin 3x. The
trial solution is constructed initially from f(x) = x2 + 2xe3x + 3x cos 3x+ 4e−3x, which has seven
atoms in a list in four groups (1) 1, x, x2; (2) e3x, xe3x; (3) cos 3x; (4) sin 3x. Conflicts with
the homogeneous equation atoms causes a repair of groups (1), (3), (4), making the new groups
(1) x2, x3, x4; (2) e3x, xe3x; (3) x cos 3x; (4) x sin 3x. Then the shortest trial solution is a linear
combination of the seven atoms in the corrected list.

Place this page on top of all Ch5 work.
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Ch6. (Eigenvalues and Eigenvectors) Complete all problems.

[20%] Ch6(a): Consider a 3× 3 real matrix A with eigenpairs−1,

 5
6
−4


 ,

2i,

 i
2
0


 ,

−2i,

 −i2
0


 .

Display an invertible matrix P and a diagonal matrix D such that AP = PD.

Answer: The columns of P are the eigenvectors and the diagonal entries of D are the eigenvalues,
taken in the same order.

[40%] Ch6(b): Find the eigenvalues of the matrix A =


0 −12 3 0
0 1 −1 0
0 1 3 0
0 5 1 3

.

To save time, do not find eigenvectors!

Answer: The characteristic polynomial is det(A− rI) = (−r)(3− r)(r − 2)2. The eigenvalues
are 0, 2, 2, 3. Determinant expansion of det(A − λI) is by the cofactor method along column 1.
This reduces it to a 3 × 3 determinant, which can be expanded by the cofactor method along
column 3.

[40%] Ch6(c): The matrix A =

 0 −12 3
0 1 −1
0 1 3

 has eigenvalues 0, 2, 2 but it is not diagonalizable,

because λ = 2 has only one eigenpair. Find an eigenvector for λ = 2.
To save time, don’t find the eigenvector for λ = 0.

Answer: Because A−2I =

 −2 −12 3
0 −1 −1
0 1 1

 has last frame B =

 1 0 −15/2
0 1 1
0 0 0

, then

there is only one eigenpair for λ = 2, with eigenvector ~v =

 15
−2

2

.

Alternate problems.

[25%] Ch6(alt): Let A be a 2× 2 matrix satisfying for all real numbers c1, c2 the identity

A

(
c1

(
1
−2

)
+ c2

(
−1

3

))
= 4c2

(
1
−3

)
.

Find a diagonal matrix D and an invertible matrix P such that AP = PD.

Answer: Choose c1 = 1, c2 = 0 in the identity to get A

((
1
−2

))
=

(
0
0

)
. This equation

means 0 is an eigenvalue, giving first eigenpair

(
0,

(
1
−2

))
. The second eigenpair

(
4,

(
−1

3

))



is found the same way, choosing c1 = 0, c2 = 1. Then D =

(
0 0
0 4

)
(diagonal entries are the

eigenvalues 0, 4) and P =

(
1 −1
−2 3

)
(columns are the eigenvectors, in the same order).

[40%] Ch6(alt): Find the two eigenvectors corresponding to complex eigenvalues −1± 2i for the 2× 2

matrix A =

(
−1 2
−2 −1

)
.

Answer:

(
−1 + 2i,

(
−i

1

))
,

(
−1− 2i,

(
i
1

))

[30%] Ch6(alt): Let A =

(
−7 4
−12 7

)
. Circle possible eigenpairs of A.

(
1,

(
1
2

))
,

(
2,

(
2
1

))
,

(
−1,

(
2
3

))
.

Answer: The first and the last, because the test A~x = λ~x passes in both cases.

[20%] Ch6(alt): Let I denote the 3× 3 identity matrix. Assume given two 3× 3 matrices B, C, which
satisfy CP = PB for some invertible matrix P . Let C have eigenvalues −1, 1, 5. Find the eigenvalues
of A = 2I + 3B.

Answer: Both B and C have the same eigenvalues, because det(B − λI) = det(P (B −
λI)P−1) = det(PCP−1 − λPP−1) = det(C − λI). Further, both B and C are diagonalizable.
The answer is the same for all such matrices, so the computation can be done for a diagonal
matrix B = diag(−1, 1, 5). In this case, A = 2I + 3B = diag(2, 2, 2) + diag(−3, 3, 15) =
diag(−1, 5, 17) and the eigenvalues of A are −1, 5, 17.

Ch6(alt): Let A be a 3× 3 matrix with eigenpairs

(4, ~v1), (3, ~v2), (1, ~v3).

Let P denote the augmented matrix of the eigenvectors ~v2, ~v3, ~v1, in exactly that order. Display the
answer for P−1AP . Justify the answer with a sentence.

Answer: Because AP = PD, then D = P−1AP is the diagonal matrix of eigenvalues, taken in

the order determined by the eigenpairs (3, ~v2), (1, ~v3), (4, ~v1). Then D =

 3 0 0
0 1 0
0 0 4

.

[35%] Ch6(alt): The matrix A below has eigenvalues 3, 3 and 3. Test A to see it is diagonalizable, and
if it is, then display Fourier’s model for A.

A =

 4 1 1
−1 2 1

0 0 3



Answer: Compute rref(A− 3I) =

 1 1 0
0 0 1
0 0 0

. This has rank 2, nullity 1. There is just one

eigenvector

 1
−1

0

. No Fourier’s model, not diagonalizable.



[20%] Ch6(alt) Assume A is a given 4× 4 matrix with eigenvalues 0, 1, 3± 2i. Find the eigenvalues of
4A− 3I, where I is the identity matrix.

Answer: Such a matrix is diagonalizable, because of four distinct eigenvalues. Then 4B − 3I
has the same eigenvalues for all matrices B similar to A. In particular, 4A − 3I has the same
eigenvalues as 4D − 3I where D is the diagonal matrix with entries 0, 1, 3 + 2i, 3− 2i. Compute

4D − 3I =


−3 0 0 0

0 1 0 0
0 0 9 + 8i 0
0 0 0 9− 8i

. The answer is 0, 1, 9 + 8i, 9− 8i.

[40%] Ch6(alt): Find the eigenvalues of the matrix A =


0 −2 −5 0 0
3 0 −12 3 0
0 0 1 −1 0
0 0 1 3 0
0 0 5 1 3

.

To save time, do not find eigenvectors!

Answer: The characteristic polynomial is det(A−rI) = (r2+6)(3−r)(r−2)2. The eigenvalues
are 2, 2, 3,±

√
6i. Determinant expansion is by the cofactor method along column 5. This reduces

it to a 4 × 4 determinant, which can be expanded as a product of two quadratics. In detail,

we first get |A − rI| = (3 − r)|B − rI|, where B =


0 −2 −5 0
3 0 −12 3
0 0 1 −1
0 0 1 3

. So we have one

eigenvalue 3, and we find the eigenvalues of B. Matrix B is a block matrix B =

(
B1 B2

0 B3

)
,

where B1, B2, B3 are all 2 × 2 matrices. Then B − rI =

(
B1 − rI B2

0 B3 − rI

)
. Using the

determinant product theorem for such special block matrices (zero in the left lower block) gives
|B − rI| = |B1 − rI|B3 − rI|. So the answer for the eigenvalues of A is 3 and the eigenvalues
of B1 and B3. We report 3,±

√
6i, 2, 2. It is also possible to directly find the eigenvalues of B by

cofactor expansion of |B − rI|.

[20%] Ch6(alt): Consider a 3× 3 real matrix A with eigenpairs3,

 13
6

−41


 ,

2i,

 i
2
0


 ,

−2i,

 −i2
0


 .

(1) [10%] Display an invertible matrix P and a diagonal matrix D such that AP = PD.

(2) [10%] Display a matrix product formula for A, but do not evaluate the matrix products,
in order to save time.

Answer: (1) P =

 13 i −i
6 2 2

−41 0 0

, D =

 3 0 0
0 2i 0
0 0 −2i

. (2) AP = PD implies A =

PDP−1.

[25%] Ch6(alt): Assume two 3× 3 matrices A, B have exactly the same characteristic equations. Let
A have eigenvalues 2, 3, 4. Find the eigenvalues of (1/3)B − 2I, where I is the identity matrix.



Answer: Because the answer is the same for all matrices similar to A (that is, all B = PAP−1)
then it suffices to answer the question for diagonal matrices. We know A is diagonalizable,
because it has distinct eigenvalues. So we choose D equal to the diagonal matrix with entries

2, 3, 4. Compute 1
3D − 2I =

 2
3 − 2 0 0

0 3
3 − 2 0

0 0 4
3 − 2

. Then the eigenvalues are −4
3 ,−1,−2

3 .

[25%] Ch6(alt): Let 3× 3 matrices A and B be related by AP = PB for some invertible matrix
P . Prove that the roots of the characteristic equations of A and B are identical.

Answer: The proof depends on the identity A − rI = PBP−1 − rI = P (B − rI)P−1 and
the determinant product theorem |CD| = |C||D|. We get |A − rI| = |P ||B − rI||P−1| =
|PP−1||B − rI| = |B − rI|. Then A and B have exactly the same characteristic equation, hence
exactly the same eigenvalues.

[25%] Ch6(alt): Find the eigenvalues of the matrix B:

B =


2 4 −1 0
0 5 −2 1
0 0 4 1
0 0 1 4


Answer: The characteristic polynomial is det(B − rI) = (2 − r)(5 − r)(5 − r)(3 − r). The
eigenvalues are 2, 3, 5, 5.

It is possible to directly find the eigenvalues of B by cofactor expansion of |B − rI|.
An alternate method is described below, which depends upon a determinant product theorem for
special block matrices, such as encountered in this example.

Matrix B is a block matrix B =

(
B1 B2

0 B3

)
, where B1, B2, B3 are all 2 × 2 matrices. Then

B − rI =

(
B1 − rI B2

0 B3 − rI

)
. Using the determinant product theorem for such special

block matrices (zero in the left lower block) gives |B − rI| = |B1 − rI||B3 − rI|. So the
answer is that B has eigenvalues equal to the eigenvalues of B1 and B3. These are quickly
found by Sarrus’ Rule applied to the two 2 × 2 determinants |B1 − rI| = (2 − r)(5 − r) and
|B3 − rI| = r2 − 8r + 15 = (5− r)(3− r).

[25%] Ch6(alt): Let A be a 3× 3 matrix with eigenpairs

(5, ~v1), (3, ~v2), (−1, ~v3).

Let P = aug(~v2, ~v1, ~v3). Display the answer for P−1AP [20%]. Justify your claim with a sentence [5%].

Answer: From AP = PD we have D = P−1AP . The diagonal entries of D are 3, 5,−1.

[25%] Ch6(alt): Let A be a 2× 2 matrix with eigenpairs

(λ1, ~v1), (λ2, ~v2).

Display Fourier’s model for the matrix A.

Answer: A(c1~v1 + c2~v2) = c1λ1~v1 + c2λ2~v2 where c1, c2 are arbitrary constants.

Place this page on top of all Ch6 work.



Name 7:30am
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Ch7. (Linear Systems of Differential Equations) Complete all problems.

[50%] Ch7(a): Solve for the general solution x(t), y(t) in the system below. Use any method that
applies, from the lectures or any chapter of the textbook.

dx

dt
= x+ 3y,

dy

dt
= 18x+ 4y.

Answer: Define A =

(
1 3

18 4

)
. The eigenvalues−5, 10 are roots of the characteristic equation

det(A − rI) = (r + 5)(r − 10) = 0. By Cayley-Hamilton-Zeibur, x(t) = c1e
−5t + c2e

10t. Using
the first differential equation x′ = x + 3y implies 3y(t) = x′ − x = −6c1e

−5t + 9c2e
10t. Then

y(t) = −2c1e
−5t + 3c2e

10t.

Eigenanalysis would use the eigenpairs

(
−5,

(
1
−2

))
,

(
10,

(
1
3

))
to report solution ~u(t) =

c1~v1e
−5t + c2~v2e

10t.

Laplace theory would start with the resolvent equation (sI − A)L(~u(t)) = ~u(0). Then solve for
L(x(t)),L(y(t)) and finally use the backward table and Lerch’s theorem to find the general solution

in terms of constants c1, c2 defined by ~u(0) =

(
c1
c2

)
.

[50%] Ch7(b): Define

A =

 5 −1 −1
0 3 0
−2 1 4


The eigenvalues of A are 3, 3, 6. Apply the eigenanalysis method, which requires eigenvalues and
eigenvectors, to solve the differential system ~u′ = A~u. Show all eigenanalysis steps and display the
differential equation answer ~u(t) in vector form.

Answer: Form the matrix A1 = A−(3)I =

 2 −1 −1
0 0 0
−2 1 1

. Then rref(A1) =

 1 −1/2 −1/2
0 0 0
0 0 0

.

The last frame algorithm implies the general solution of A1~x = ~0 is x1 = t1/2 + t2/2, x2 = t1,

x3 = t2. Take the partials on symbols t1, t2 to obtain the eigenvectors ~v1 =

 1/2
1
0

, ~v2 = 1/2
0
1

. Repeat with A2 = A− (6)I =

 −1 −1 −1
0 −3 0
−2 1 −2

. Then rref(A2) =

 1 0 1
0 1 0
0 0 0

. The

last frame algorithm implies the general solution of A2~x = ~0 is x1 = −t1, x2 = 0, x3 = t1. Take

the partial on symbol t1 to obtain the eigenvector ~v3 =

 −1
0
1

. The general solution of ~u′ = A~u

is ~u(t) = c1e
3t~v1 + c2e

3t~v2 + e6t~v3.



Alternate problems.

[30%] Ch7(alt): Let A be an n × n matrix of real numbers. State three different methods for solving

the system ~~u
′
= A~~u, which you learned in this course.

Answer: Eigenanalysis, Cayley-Hamilton-Ziebur, Laplace resolvent, exponential matrix.

[15%] Ch7(alt): Solve the 3× 3 differential system ~u′ = A~u for matrix

A =

 0 1 0
0 0 2
0 0 0

 .
Answer: The matrix is triangular, so the theory of linear cascades applies. First, x′3 = 0, then
x3 = c1. Back-substitute: x′2 = x3 = c1. Then x2 = c1t+ c2. Finally, x′1 = x2 = c1t+ c2, which
implies x1 = c1t

2/2 + c2t+ c3.

Does Cayley-Hamilton-Ziebur work? Yes, it always works. The roots of |A−rI| = 0 are r = 0, 0, 0,
which implies atoms 1, t, t2 and then ~u = ~d1 + ~d2t+ ~d3t

2. Differentiate this relation two times and
set t = 0 in the resulting 3 equations in 3 vector unknowns ~d1, ~d2, ~d3. Solve the system for the

unknown vectors, in terms of A and ~u(0) =

 c1
c2
c3

 ≡ ~c. You will get ~c = ~d1, A~c = ~d2, A
2~c = ~d3.

Then ~u(t) =
(
I +At+A2t2

)
~c. This answer is slightly different than what was obtained by linear

cascades, and it takes more time to produce.

Does the Eigenanalysis method apply? The roots of the characteristic equation are 0, 0, 0, and the
corresponding atoms are 1, x, x2. But A− 0I is just A, which has rank 2 and nullity 1. There is
only one eigenpair: A is not diagonalizable. The eigenanalysis method does not apply.

Laplace theory? Yes, it always works. Begin with the Laplace resolvent equation (sI −A)L(~u) =
~u(0) = ~c. Solve as L(~u) = (sI − A)−1~c. Using the backward Laplace table on each entry

in (sI − A)−1 gives the answer ~u(t) =

 1 t t2

0 1 2 t
0 0 1


 c1
c2
c3

. None of this is easy, and the

preferred method is linear cascades.

[20%] Ch7(c): Find the 2× 2 matrix A, given the general solution of ~u′ = A~u is

~u(t) = c1e
3t

(
1
1

)
+ c2

(
−2

1

)
.

Answer: Let P =

(
1 −2
1 1

)
, D = diag(3, 0). Then A = PDP−1 =

(
1 2
1 2

)
.

[15%] Ch7(alt): A 2 × 2 real matrix A has eigenvalues −1 and −2. Display the form of the general
solution of the differential equation ~u′ = A~u.

Answer: Solution 1. By Cayley-Hamilton-Ziebur the solution is ~u(t) = ~d1e
−t + ~d2e

−2t where
vectors ~d1, ~d2 are determined by A and ~u(0).

Solution 2. Distinct eigenvalues implies A is diagonalizable with eigenpairs (−1, ~v1), (−2, ~v2).
Then for arbitrary constants c1, c2 the solution is given by the equation ~u(t) = c1e

−t~v1 +c2e
−2t~v2.

[25%] Ch7(alt): Give an example of a 2× 2 real matrix A for which Fourier’s model is not valid. Then
display the general solution ~x(t) of ~x′ = A~x.



Answer: Let A =

(
0 1
0 0

)
. Then λ = 0, 0 are the eigenvalues and there is only one eigenvector

(a previously worked example). So Fourier’s model does not hold: A is not diagonalizable. The
general solution is by linear cascades: x(t) = c1t+ c2, y(t) = c1.

[25%] Ch7(alt): Consider a 2 × 2 system ~x′ = A~x. Assume A has complex eigenvalues λ = ±
√

3i.
Prove that limt→∞ |~x(t)| =∞ is false for every possible solution ~x(t).

Answer: By Cayley-Hamilton-Ziebur, the solution is a vector linear combination of the atoms
cos
√

3t, sin
√

3t. Such linear combinations cannot in general have a limit at t =∞, because the
trigonometric functions fail to have a limit at t =∞.

[25%] Ch7(alt): Let x(t) and y(t) be the amounts of salt in brine tanks A and B, respectively. Assume
fresh water enters A at rate r = 10 gallons/minute. Let A empty o B at rate r, and let B empty at rate
r. Assume the model brine tank mode

x′(t) = − r

50
x(t),

y′(t) =
r

50
x(t)− r

100
y(t),

x(0) = 10, y(0) = 15.

Find the maximum amount of salt ever in tank B for t ≥ 0.

Answer: The maximum of y is when y′ = 0. Compute x(t) = 10e−t/10, y(t) = 5e−t/5+10e−t/10

Then y′ = 0 when y = 2x, which can be solved exactly using logs: t = −10 ln(2). Because it
occurs for negative time, then the maximum is at t = 0. The maximum value is y(0) = 15. The
salt in tank B decreases for t ≥ 0, because fresh water is added, which does not add salt to tank
B, but flushes out the salt already present.

[25%] Ch7(alt): A 3× 3 real matrix A has all eigenvalues equal to zero and corresponding eigenvectors 0
1
1

 ,
 0
−5

1

 ,
 1

1
2

 .
Find the general solution of the differential equation ~x′ = A~x.

[50%] Ch7(alt): Apply the eigenanalysis method to solve the system ~x′ = A~x, given

A =

 −4 1 1
1 −4 1
0 0 −4


Answer: The eigenpairs of A are (−5, ~v1), (−3, ~v2), (−4, ~v3) where

~v1 =

 −1
1
0

 , ~v2 =

 1
1
0

 , ~v3 =

 −1
−1

1

 .
Then

~u(t) = c1e
−5t~v1 + c1e

−3t~v2 + c1e
−4t~v3.

[25%] Ch7(alt): Solve for x(t) in the system below. Don’t solve for y(t)!

x′ = x+ y,
y′ = −9x+ y.



Answer: Let A =

(
1 1
−9 1

)
. The roots of |A − rI| = r2 − 2r + 10 = 0 are 1 ± 3i. Then

by Cayley-Hamilton-Ziebur, x(t) = c1e
t cos 3t+ c2e

t sin 3t. The first differential equation implies
y(t) = x′ − x = x+ et(−3c1 sin 3t+ 3c2 cos 3t)− x = −3c1e

t sin 3t+ 3c2e
t cos 3t.

[25%] Ch7(alt): Consider a 4 × 4 system ~x′ = A~x. Assume A has an eigenvalue λ = −1/7 with
corresponding eigenvectors

~v1 =


1
0
−1

0

 , ~v2 =


1
1
−1

1

 .
Find a nonzero solution of the differential equation with limit zero at infinity.

Answer: Choose ~x(t) equal to eλt~v, where ~v is one of the two listed eigenvectors.

[25%] Ch7(alt): Let x(t) and y(t) be the amounts of salt in brine tanks A and B, respectively. Assume
fresh water enters A at rate r = 5 gallons/minute. Let A empty to B at rate r, and let B empty at rate
r. Assume the model 

x′(t) = − r

50
x(t),

y′(t) =
r

50
x(t)− r

100
y(t),

x(0) = 5, y(0) = 10.

Find an equation for the amount of salt in tank B.

Answer: The problem is a linear cascade, to be solved by first order scalar methods. First find
x(t) = constant / integrating factor = 5e−t/10. Substitute this formula into the second equation
to get y′ + (1/20)y = (1/2)e−t/10. Solve for y = 20e−t/20 − 10e−t/10 by the linear integrating
factor method.

Place this page on top of all Ch7 work.
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Ch8. (Matrix Exponential) Complete all problems.

[40%] Ch8(a): Using any method in the lectures or the textbook, display the matrix exponential eBt,
for

B =

(
0 2
−2 0

)
.

Answer: We find a fundamental matrix Z(t). It is done by solving the matrix system ~u′ = B~u
with Ziebur’s shortcut. Then x = c1 cos 2t + c2 sin 2t, 2y = x′ = −2c1 sin 2t + 2c2 cos 2t, and

finally y = −c1 sin 2t + c2 cos 2t. Write ~u = Z(t)

(
c1
c2

)
where Z(t) =

(
cos 2t sin 2t
− sin 2t cos 2t

)
.

Because Z(0) is the identity, then

eBt = Z(t) =

(
cos 2t sin 2t
− sin 2t cos 2t

)
.

Putzer’s formula can be used, eBt = Real part
(
eλ1tI + eλ1t−eλ2t

λ1−λ2
(B − λ1I)

)
. The eigenvalues λ1 =

2i, λ2 = −2i are found from det(B − λI) = λ2 + 4 = 0. A third method would use the formula
eBt = L−1((sI −B)−1) to find the answer in a series of Laplace steps.

[30%] Ch8(b): Consider the 2× 2 system

x′ = 3x,
y′ = −y,
x(0) = 1, y(0) = 2.

Solve the system as a matrix problem ~u′ = A~u for ~u, using the matrix exponential eAt.

Answer: Let A =

(
3 0
0 −1

)
. The answer for eAt can be obtained quickly from the theorem

ediag(a,b)t = diag(eat, ebt), giving the answer eAt = diag(e3t, e−t). Then use ~u(t) = eAt~u(0),

which implies

(
x(t)
y(t)

)
= eAt

(
1
2

)
=

(
e3t 0

0 e−t

)(
1
2

)
=

(
e3t

2e−t

)
.

[30%] Ch8(c): Display the matrix form of variation of parameters for the 2× 2 system. Then integrate
to find one particular solution.

x′ = 3x+ 3,
y′ = −y + 1.

Answer: Variation of parameters is ~up(t) = eAt
∫ t
0 e
−As

(
3
1

)
ds. Then eAt = diag(e3t, e−t)

from the previous problem. Substitute t→ −s to obtain e−As = diag(e−3s, es). The integration
step is ∫ t

0
diag(e−3s, es)

(
3
1

)
ds =

∫ t

0

(
3e−3s

es

)
ds =

(
1− e−3t
et − 1

)
.

Finally, ~up(t) = diag(e3t, e−t)

(
1− e−3t
et − 1

)
=

(
e3t − 1
1− e−t

)
.



Alternate problems.

[30%] Ch8(alt): Check the correct statements.

1. The general solution of ~u′ = A~u is a vector linear combination of atoms found from the roots of
det(A− λI) = 0.

2. The system ~u′ = A~u can only be solved when A is diagonalizable.

3. The general solution of ~u′ = A~u can be written as ~u(t) = eAt~u(0).

4. The matrix exponential eAt can be found using Laplace theory.

5. For any n× n matrix A, (sI −A)−1 equals the Laplace integral of eAt.

6. A second order system ~x′′ = A~x + ~G(t) can be transformed into a first order system of the form

~u′ = B~u+ ~F (t).

Answer: The second is false. The others are true.

Place this page on top of all Ch8 work.



Name 7:30am

Mathematics 2250-1 Sample Final Exam Problems at 7:30am on 27 Apr 2012

Ch9. (Nonlinear Systems) Complete all problems.

[30%] Ch9(a):
Determine whether the equilibrium ~u = ~0 is stable or unstable. Then classify the equilibrium point
~u = ~0 as a saddle, center, spiral or node.

~u′ =

(
3 4
−2 −1

)
~u

Answer: The eigenvalues of A are roots of r2 − 2r + 5 = (r − 1)2 + 4 = 0, which are complex
conjugate roots 1± 2i. The atoms are exponentials times cosines and sines. Rotation eliminates
the saddle and node. Finally, the atoms et cos 2t, et sin 2t have limit zero at t = −∞, therefore
the system is unstable at t = ∞. So it must be a spiral [centers have no exponentials]. Report:
unstable spiral.

[30%] Ch9(b): Consider the nonlinear dynamical system

x′ = x− y2 − y + 9,
y′ = 2x2 − 2xy.

An equilibrium point is x = 3, y = 3. Compute the Jacobian matrix A = J(3, 3) of the linearized system
at this equilibrium point.

Answer: The Jacobian is J(x, y) =

(
1 −2y − 1

4x− 2y −2x

)
. Then A = J(3, 3) =

(
1 −7
6 −6

)
.

[40%] Ch9(c): Consider the nonlinear dynamical system

x′ = 4x+ 4y + 9− x2,
y′ = 3x+ 3y.

At equilibrium point x = −3, y = 3, the Jacobian matrix is A = J(−3, 3) =

(
10 4
3 3

)
.

(1) Determine the stability at t =∞ and the phase portrait classification saddle, center, spiral or node
at ~u = ~0 for the linear system ~u′ = A~u.

(2) Apply a theorem to classify x = −3, y = 3 as a saddle, center, spiral or node for the nonlinear
dynamical system. Discuss all details of the application of the theorem.

Answer: The Jacobian is J(x, y) =

(
4− 2x 4

3 3

)
. Then A = J(−3, 3) =

(
10 4
3 3

)
. The

eigenvalues of A are found from r2−13r+18 = 0, giving two different positive roots a, b. Because
both atoms eat, ebt are real, rotation does not happen, and the classification must be a saddle or
a node. The atoms have a limit at t = −∞, therefore it is a node, and we report an unstable
node for the linear problem ~u′ = A~u at equilibrium ~u = ~0. Theorem 2 in 9.2 applies to say that
the same is true for the nonlinear system: unstable node at x = −3, y = 3.



Alternate problems

[10%] Ch9(b): Consider the nonlinear dynamical system

x′ = x+ y,
y′ = x+ y + 4− x2.

Find the equilibrium points of the nonlinear system.

Answer: None supplied.

Place this page on top of all Ch9 work.
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Ch10. (Laplace Transform Methods) Complete all problems.
It is assumed that you know the minimum forward Laplace integral table and the 8 basic rules for
Laplace integrals. No other tables or theory are required to solve the problems below. If you don’t know
a table entry, then leave the expression unevaluated for partial credit.

[40%] Ch10(a): Fill in the blank spaces in the Laplace tables. Each wrong answer subtracts 3 points
from the total of 40.

f(t)

L(f(t)) 1

s3
1

s− 4

s

s2 + 4

2

s2 + 1

e−s

s+ 1

f(t)
t tet t cos 2t t(1 + et) et sin t

L(f(t))

Answer: First table left to right:
t2

2
, e4t, cos 2t, 2 sin t, e1−t step(t − 1). Function step(t) is

the unit step u(t) of the textbook, step(t) = 1 for t ≥ 0, zero elsewhere. Second table left to

right:
1

s2
,

1

(s− 1)2
,
−d
ds

s

s2 + 4
=

s2 − 4

(s2 + 4)2
,

1

s2
+

1

(s− 1)2
,

1

(s− 1)2 + 1
.

[30%] Ch10(b): Compute L(f(t)) for the pulse f(t) = t on 1 ≤ t < 2, f(t) = 0 otherwise.

Answer: Define step(t) to be the unit step. Use f(t) = t step(t− 1)− t step(t− 2), and the
second shifting theorem. Then L(t step(t− 1)) = e−sL( t|t→t+1) = e−sL(t+ 1) = e−s( 1

s2
+ 1

s ).
Similarly, L(t step(t − 2)) = e−2sL( t|t→t+2) = e−2sL(t + 2) = e−2s( 1

s2
+ 2

s ). The answer:
L(f(t)) = e−s( 1

s2
+ 1

s )− e−2s( 1
s2

+ 2
s ).

[30%] Ch10(c): Solve by Laplace’s method for the solution x(t):

x′′(t)− 2x′(t) = 4e2t, x(0) = x′(0) = 0.

Answer: x(t) = 1−e2t+2te2t. The Laplace steps are: (1) L(x(t)) =
4

s(s− 2)2
; (2) L(x(t)) =

4

s(s− 2)2
=
A

s
+

B

s− 2
+

C

(s− 2)2
= L(A+Be2t +Cte2t) where by partial fractions the answers

are A = 1, B = −1, C = 2. Lerch’s theorem implies x(t) = 1− e2t + 2te2t.

Alternate problems.

[20%] Ch10(alt): Let f(t) = | sin t| on 0 ≤ t ≤ 2π, with f(t) periodic of period 2π. Display the formula
for L(f(t)) according to the periodic function rule. To save time, don’t evaluate any integrals.

[20%] Ch10(alt): Solve for f(t) in the equation L(f(t)) =
e−s

s− 2
.



Answer: Use the second shifting theorem, e−asL(h(t)) = L(h(t − a) step(t − a)). Then
L(f(t)) = e−sL(e−2t) = L(e−2u

∣∣
u=t−1 step(t − 1)) = L(e2−2t step(t − 1)). Lerch’s theorem

implies f(t) = e2−2t step(t− 1).

[20%] Ch10(alt): Let f(t) = | sin t| on 0 ≤ t ≤ 2π, with f(t) periodic of period 2π. Display the formula
for L(f(t)) according to the periodic function rule. To save time, don’t evaluate any integrals.

Answer: The formula is L(f(t)) =

∫ 2π

0
| sin(t)|e−stdt
1−e−2πs .

[20%] Ch10(alt): Solve for f(t) in the equation
d

ds
L(f(t)) =

1

(s+ 1)2
+

d2

ds2
L(sin t).

Answer: L((−t)f(t)) = 1
u2

∣∣∣
u=s+1

+L((−t)2 sin t) = L(e−t (t)+t2 sin t), giving the final answer

f(t) = −e−t − t sin t. The Laplace details use the first shifting theorem and s-differentiation
theorem.

[40%] Ch10(alt) Use Laplace’s method to find an explicit formula for x(t). Don’t find y(t)!

x′(t) = 2x(t) + 5y(t),
y′(t) = 5x(t) + 2y(t),
x(0) = 1,
y(0) = 1.

Answer: Find the resolvent equation L(~u) = (sI −A)−1~u(0). After some details, x = y = e7t.

Additional Laplace problems without answers

[25%] Ch10(alt): Find f(t) by partial fraction methods, given

L(f(t)) =
8s3 + 30s2 + 32s+ 40

(s+ 2)2(s2 + 4)
.

[15%] Ch10(alt): Solve for f(t), given

L(f(t)) =
d

ds

(
L
(
t2e3t

)∣∣∣
s→(s+3)

)
.

[20%] Ch10(alt): Solve for f(t), given

L(f(t)) =

(
s+ 1

s+ 2

)2 1

(s+ 2)2

[15%] Ch10(alt): Solve by Laplace’s method for the solution x(t):

x′′(t) + 3x′(t) = 9e−3t, x(0) = x′(0) = 0.

[25%] Ch10(alt): Find L(f(t)), given f(t) = sinh(2t)
sin(t)

t
.

[20%] Ch10(alt): Fill in the blank spaces in the Laplace table:



f(t) t3 t cos t t2e2t

L(f(t)) 6

s4
1

s+ 2

s+ 1

s2 + 2s+ 5

[30%] Ch10(alt): Apply Laplace’s method to find a formula for L(x(t)). Do not solve for x(t)!
Document steps by reference to tables and rules.

xiv + 4x′′ = et(5t+ 4et + 3 sin 3t), x(0) = x′(0) = x′′(0) = 0, x′′′(0) = −1.

[35%] Ch10(alt): Apply Laplace’s method to the system to find a formula for L(y(t)). Find a 2 × 2
system for L(x), L(y) [20%]. Solve it only for L(y) [15%]. To save time, do not solve for x(t) or y(t)!

x′′ = 3x+ 3y + 2,
y′′ = 4x+ 2y,
x(0) = 0, x′(0) = 2,
y(0) = 0, y′(0) = 3.

[35%] Ch10(alt): Solve for x(t), given

L(x(t)) =
d

ds

(
L(e2t sin 2t)

)
+

s+ 1

(s+ 2)2
+

2 + s

s2 + 5s
+ L(t+ sin t)|s→(s−2) .

[30%] Ch10(alt): Find f(t) by partial fraction methods, given

L(f(t)) =
8s2 − 24

(s− 1)(s+ 3)(s+ 1)2
.

[30%] Ch10(alt): Apply Laplace’s method to find a formula for L(x(t)). To save time, do not solve
for x(t)! Document steps by reference to tables and rules.

xiv − x′′ = 3t2 + 4e−2t + 5et sin 2t, x(0) = x′(0) = x′′(0) = 0, x′′′(0) = −1.

Place this page on top of all Ch10 work.


