\qquad

Differential Equations and Linear Algebra 2250
 Midterm Exam 3
 Version 1a, 19apr2012

Scores
3.
4.
5.

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count $3 / 4$, answers count $1 / 4$.
3. (Chapter 5) Complete all.
(3a) $[60 \%]$ The differential equation $\frac{d^{4} y}{d x^{4}}-\frac{d^{2} y}{d x^{2}}=12 x^{2}$ has homogeneous solution y_{h} a linear combination of $1, x, e^{x}, e^{-x}$. Find a particular solution $y_{p}(x)$ of the form $y=d_{1} x^{2}+d_{2} x^{3}+d_{3} x^{4}$ by the method of undetermined coefficients (yes, find d_{1}, d_{2}, d_{3}).

Answer:

Solution y_{h} is a linear combination of the atoms $1, x, e^{x}, e^{-x}$. A particular solution is $y_{p}=$ $-x^{4}-12 x^{2}$.
The atoms for $y^{(4)}-y^{\prime \prime}=0$ are found from $r^{4}-r^{2}=0$ with roots $r=0,0,1,-1$. The atoms in $f(x)=12 x^{2}$ are $1, x, x^{2}$. Because $1, x$ are solutions of the homogeneous equation, then the list $1, x, x^{2}$ from $f(x)$ is multiplied by x^{2} to obtain the corrected list x^{2}, x^{3}, x^{4}. Then $y_{p}=d_{1} x^{2}+d_{2} x^{3}+d_{3} x^{4}$.
Substitute y_{p} into the equation $y^{(4)}-y^{\prime \prime}=12 x^{2}$ to get $24 d_{3}-\left(2 d_{1}+6 d_{2} x+12 d_{3} x^{2}\right)=12 x^{2}$. Matching coefficients of atoms gives $24 d_{3}-2 d_{1}=0,-6 d_{2}=0,-12 d_{3}=12$. Then $d_{3}=-1, d_{2}=$ $0, d_{1}=-12$. Finally, $y_{p}=(-12) x^{2}+(0) x^{3}+(-1) x^{4}$.
(3b) [20\%] Given $7 x^{\prime \prime}(t)+29 x^{\prime}(t)+4 x(t)=0$, which represents a damped spring-mass system with $m=7, c=29, k=4$, determine if the equation is over-damped, critically damped or under-damped. To save time, do not solve for $x(t)$!

Answer:

Use the quadratic formula to decide. The number under the radical sign in the formula, called the discriminant, is $b^{2}-4 a c=29^{2}-4(7)(4)=729$, therefore there are distinct roots and the equation is over-damped. Alternatively, factor $7 r^{2}+29 r+4$ to obtain roots $-1 / 7,-4$ and then classify as over-damped.
(3c) $[20 \%]$ Consider the variation of parameters formula (33) in Edwards-Penney,

$$
y_{p}(x)=y_{1}(x)\left(\int \frac{-y_{2}(x) f(x)}{W(x)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W(x)} d x\right) .
$$

Given the second order equation

$$
2 y^{\prime \prime}(x)+4 y^{\prime}(x)+3 y(x)=17 \sin \left(x^{2}\right),
$$

write the equations for the variables y_{1}, y_{2}, f.
To save time, do not compute W and do not write out y_{p}. Do not try to evaluate any integrals!

Answer:
Variables are $y_{1}(x)=e^{-x} \cos (x / \sqrt{2}), y_{2}(x)=e^{-x} \sin (x / \sqrt{2}), f(x)=17 \sin \left(x^{2}\right)$.
Use this page to start your solution. Attach extra pages as needed.

Name.
4. (Chapter 5) Complete all.
(4a) [60\%] A homogeneous linear differential equation with constant coefficients has characteristic equation of order 8 with roots $0,-1,-1,-1,3 i,-3 i, 3 i,-3 i$, listed according to multiplicity. The corresponding nonhomogeneous equation for unknown $y(x)$ has right side $f(x)=0.01 e^{-x}+40 x^{2}+x \cos 3 x+\sin 3 x$. Determine the undetermined coefficients shortest trial solution for y_{p}.
To save time, do not evaluate the undetermined coefficients and do not find $y_{p}(x)$! Undocumented detail or guessing earns no credit.

Answer:
The atoms for roots of the characteristic equation are $1, e^{-x}, x e^{-x}, x^{2} e^{-x}, \cos 3 x, x \cos 3 x, \sin 3 x, x \sin 3 x$. The atom list for $f(x)$ is $e^{-x}, 1, x, x^{2}, \cos 3 x, x \cos 3 x, \sin 3 x, x \sin 3 x$. This list of 8 atoms is broken into 4 groups, each group having exactly one base atom: (1) $1, x, x^{2}$, (2) e^{-x}, (3) $\cos 3 x, x \cos 3 x$, (4) $\sin 3 x, x \sin 3 x$. Each group contains a solution of the homogeneous equation. The modification rule is applied to groups 1 through 4. The trial solution is a linear combination of the replacement 8 atoms in the new list (1) x, x^{2}, x^{3}, (2) $x^{3} e^{-x}$, (3) $x^{2} \cos 3 x, x^{3} \cos 3 x$ (4) $x^{2} \sin 3 x, x^{3} \sin 3 x$.
(4b) [40\%] Let $f(x)=\left(x+e^{x}\right) \sin x$. Find the characteristic polynomial of a constant-coefficient linear homogeneous differential equation which has $f(x)$ as a solution.

Answer:
Expand $f(x)=x \sin x+e^{x} \sin x$. Because $x \sin x$ is an atom for the differential equation if and only if $\sin x, x \sin x, \cos x x \cos x$ are atoms, then the characteristic equation must have roots $i,-i, i,-i$, listing according to multiplicity (double complex root). Similarly, $e^{x} \sin x$ is an atom for the differential equation if and only if $1+i, 1-i$ are roots of the characteristic equation. Total of 6 roots with product of the factors $\left(r^{2}+1\right)^{2}\left((r-1)^{2}+1\right)$ equal to the 6th order characteristic polynomial.

Use this page to start your solution. Attach extra pages as needed.

Name.
5. (Chapter 6) Complete all parts.
(5a) True and False. No details required.
[10%] True or False (circle the answer)
The matrix $A=\left(\begin{array}{cc}5 & 4 \\ 4 & 5\end{array}\right)$ has no real eigenvalues.
[10\%] True or False (circle the answer)
The matrix $A=\left(\begin{array}{ll}2 & 1 \\ 0 & 3\end{array}\right)$ has only one eigenpair.
[10\%] True or False (circle the answer)
The matrix $A=\left(\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right)$ has a complex eigenvector $\vec{v}=\binom{i}{-1}$.
Answer:
False, False, False
(5b) $\left[40 \%\right.$] Given $A=\left(\begin{array}{rrrr}2 & -1 & 2 & 0 \\ 0 & 5 & 0 & 0 \\ 3 & 1 & 3 & 0 \\ 2 & 3 & 4 & 0\end{array}\right)$, which has eigenvalues $5,5,0,0$, display all solution details for finding the eigenvectors for eigenvalue 5 .
To save time, do not find the eigenvectors for eigenvalue 0 .
Answer:
One frame sequence is required for $\lambda=5$. Subtract 5 from the diagonal of A to obtain a homogeneous system of the form $B \vec{x}=\overrightarrow{0}$. The sequence starts with $\left(\begin{array}{rrrr}-3 & -1 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 3 & 1 & -2 & 0 \\ 2 & 3 & 4 & -5\end{array}\right)$, the last frame having two rows of zeros: $\left(\begin{array}{cccc}1 & 0 & -\frac{10}{7} & \frac{5}{7} \\ 0 & 1 & \frac{16}{7} & -\frac{15}{7} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$. There are two invented symbols t_{1}, t_{2} in the last frame algorithm answer $x_{1}=\frac{10}{7} t_{1}-\frac{5}{7} t_{2}, x_{2}=-\frac{16}{7} t_{1}+\frac{15}{7} t_{2}, x_{3}=t_{1}, x_{4}=t_{2}$. Taking $\partial_{t_{1}}$ and $\partial_{t_{2}}$ gives two eigenvectors, $\left(\begin{array}{r}10 / 7 \\ -16 / 7 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{r}-5 / 7 \\ 15 / 7 \\ 0 \\ 1\end{array}\right)$.
(5c) [30\%] Find the matrices P, D in the diagonalization equation $A P=P D$ for the matrix $A=\left(\begin{array}{ll}3 & 1 \\ 2 & 2\end{array}\right)$.
Answer:
The eigenpairs are $\left(1,\binom{-1 / 2}{1}\right),\left(4,\binom{1}{1}\right)$. Then $P=\left(\begin{array}{rr}-1 / 2 & 1 \\ 1 & 1\end{array}\right), D=\left(\begin{array}{ll}1 & 0 \\ 0 & 4\end{array}\right)$.
Use this page to start your solution. Attach extra pages as needed.

