Differential Equations and Linear Algebra 2250 Midterm Exam 3 Version 1a, 19apr2012

Scores	
3.	
4.	
5.	

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count 3/4, answers count 1/4.

3. (Chapter 5) Complete all.

(3a) [60%] The differential equation $\frac{d^4y}{dx^4} - \frac{d^2y}{dx^2} = 12x^2$ has homogeneous solution y_h a linear combination of $1, x, e^x, e^{-x}$. Find a particular solution $y_p(x)$ of the form $y = d_1x^2 + d_2x^3 + d_3x^4$ by the method of undetermined coefficients (yes, find d_1, d_2, d_3).

Answer:

Solution y_h is a linear combination of the atoms $1, x, e^x, e^{-x}$. A particular solution is $y_p = -x^4 - 12x^2$.

The atoms for $y^{(4)} - y'' = 0$ are found from $r^4 - r^2 = 0$ with roots r = 0, 0, 1, -1. The atoms in $f(x) = 12x^2$ are $1, x, x^2$. Because 1, x are solutions of the homogeneous equation, then the list $1, x, x^2$ from f(x) is multiplied by x^2 to obtain the corrected list x^2, x^3, x^4 . Then $y_p = d_1x^2 + d_2x^3 + d_3x^4$.

Substitute y_p into the equation $y^{(4)} - y'' = 12x^2$ to get $24d_3 - (2d_1 + 6d_2x + 12d_3x^2) = 12x^2$. Matching coefficients of atoms gives $24d_3 - 2d_1 = 0, -6d_2 = 0, -12d_3 = 12$. Then $d_3 = -1, d_2 = 0, d_1 = -12$. Finally, $y_p = (-12)x^2 + (0)x^3 + (-1)x^4$.

(3b) [20%] Given 7x''(t) + 29x'(t) + 4x(t) = 0, which represents a damped spring-mass system with m = 7, c = 29, k = 4, determine if the equation is over-damped, critically damped or under-damped. To save time, do not solve for x(t)!

Answer:

Use the quadratic formula to decide. The number under the radical sign in the formula, called the discriminant, is $b^2 - 4ac = 29^2 - 4(7)(4) = 729$, therefore there are distinct roots and the equation is **over-damped**. Alternatively, factor $7r^2 + 29r + 4$ to obtain roots -1/7, -4 and then classify as **over-damped**.

(3c) [20%] Consider the variation of parameters formula (33) in Edwards-Penney,

$$y_p(x) = y_1(x) \left(\int \frac{-y_2(x)f(x)}{W(x)} dx \right) + y_2(x) \left(\int \frac{y_1(x)f(x)}{W(x)} dx \right)$$

Given the second order equation

$$2y''(x) + 4y'(x) + 3y(x) = 17\sin(x^2),$$

write the equations for the variables y_1, y_2, f .

To save time, do not compute W and do not write out y_p . Do not try to evaluate any integrals!

Answer:

Variables are
$$y_1(x) = e^{-x} \cos(x/\sqrt{2})$$
, $y_2(x) = e^{-x} \sin(x/\sqrt{2})$, $f(x) = 17 \sin(x^2)$.

Use this page to start your solution. Attach extra pages as needed.

Name. _____

4. (Chapter 5) Complete all.

(4a) [60%] A homogeneous linear differential equation with constant coefficients has characteristic equation of order 8 with roots 0, -1, -1, -1, 3i, -3i, 3i, -3i, listed according to multiplicity. The corresponding non-homogeneous equation for unknown y(x) has right side $f(x) = 0.01e^{-x} + 40x^2 + x\cos 3x + \sin 3x$. Determine the undetermined coefficients **shortest** trial solution for y_p .

To save time, do not evaluate the undetermined coefficients and do not find $y_p(x)$! Undocumented detail or guessing earns no credit.

Answer:

The atoms for roots of the characteristic equation are $1, e^{-x}, xe^{-x}, x^2e^{-x}, \cos 3x, x \cos 3x, \sin 3x, x \sin 3x$. The atom list for f(x) is e^{-x} , $1, x, x^2$, $\cos 3x, x \cos 3x, \sin 3x, x \sin 3x$. This list of 8 atoms is broken into 4 groups, each group having exactly one base atom: (1) $1, x, x^2$, (2) e^{-x} , (3) $\cos 3x, x \cos 3x$, (4) $\sin 3x, x \sin 3x$. Each group contains a solution of the homogeneous equation. The modification rule is applied to groups 1 through 4. The trial solution is a linear combination of the replacement 8 atoms in the new list (1) x, x^2, x^3 , (2) x^3e^{-x} , (3) $x^2\cos 3x, x^3\cos 3x$ (4) $x^2\sin 3x, x^3\sin 3x$.

(4b) [40%] Let $f(x) = (x + e^x) \sin x$. Find the characteristic polynomial of a constant-coefficient linear homogeneous differential equation which has f(x) as a solution.

Answer:

Expand $f(x) = x \sin x + e^x \sin x$. Because $x \sin x$ is an atom for the differential equation if and only if $\sin x$, $x \sin x$, $\cos x x \cos x$ are atoms, then the characteristic equation must have roots i, -i, i, -i, listing according to multiplicity (double complex root). Similarly, $e^x \sin x$ is an atom for the differential equation if and only if 1+i, 1-i are roots of the characteristic equation. Total of 6 roots with product of the factors $(r^2 + 1)^2((r-1)^2 + 1)$ equal to the 6th order characteristic polynomial.

Use this page to start your solution. Attach extra pages as needed.

Name. ____

5. (Chapter 6) Complete all parts.

(5a) True and False. No details required. [10%] True or False (circle the answer) The matrix $A = \begin{pmatrix} 5 & 4 \\ 4 & 5 \end{pmatrix}$ has no real eigenvalues. [10%] True or False (circle the answer) The matrix $A = \begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix}$ has only one eigenpair. [10%] True or False (circle the answer) The matrix $A = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$ has a complex eigenvector $\vec{v} = \begin{pmatrix} i \\ -1 \end{pmatrix}$.

Answer:

False, False, False

(5b) [40%] Given
$$A = \begin{pmatrix} 2 & -1 & 2 & 0 \\ 0 & 5 & 0 & 0 \\ 3 & 1 & 3 & 0 \\ 2 & 3 & 4 & 0 \end{pmatrix}$$
, which has eigenvalues 5, 5, 0, 0, display all solution details for

finding the eigenvectors for eigenvalue 5.

To save time, do not find the eigenvectors for eigenvalue 0.

Answer:

One frame sequence is required for $\lambda = 5$. Subtract 5 from the diagonal of A to obtain a homogeneous system of the form $B\vec{x} = \vec{0}$. The sequence starts with $\begin{pmatrix} -3 & -1 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 3 & 1 & -2 & 0 \\ 2 & 3 & 4 & -5 \end{pmatrix}$, the last frame having two rows of zeros: $\begin{pmatrix} 1 & 0 & -\frac{10}{7} & \frac{5}{7} \\ 0 & 1 & \frac{16}{7} & -\frac{15}{7} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$. There are two invented symbols t_1 , t_2 in the last frame algorithm answer $x_1 = \frac{10}{7}t_1 - \frac{5}{7}t_2$, $x_2 = -\frac{16}{7}t_1 + \frac{15}{7}t_2$, $x_3 = t_1$, $x_4 = t_2$. Taking ∂_{t_1} and ∂_{t_2} gives two eigenvectors, $\begin{pmatrix} 10/7 \\ -16/7 \\ 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} -5/7 \\ 15/7 \\ 0 \\ 1 \end{pmatrix}$.

(5c) [30%] Find the matrices P, D in the diagonalization equation AP = PD for the matrix $A = \begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix}$.

Answer:

The eigenpairs are
$$\begin{pmatrix} 1, \begin{pmatrix} -1/2 \\ 1 \end{pmatrix} \end{pmatrix}$$
, $\begin{pmatrix} 4, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{pmatrix}$. Then $P = \begin{pmatrix} -1/2 & 1 \\ 1 & 1 \end{pmatrix}$, $D = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}$.

Use this page to start your solution. Attach extra pages as needed.