Differential Equations and Linear Algebra 2250
 Midterm Exam 3
 Version 1, Thu 12 April 2012

Scores
1.
2.

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count $3 / 4$, answers count $1 / 4$.

1. (Chapter 10) Complete all parts. It is assumed that you have memorized the basic 4 -item Laplace integral table and know the 6 basic rules for Laplace integrals. No other tables or theory are required to solve the problems below. If you don't know a table entry, then leave the expression unevaluated for partial credit.
(1a) [40\%] Display the details of Laplace's method to solve the system for $y(t)$. Don't waste time solving for $x(t)$!

$$
\begin{aligned}
& x^{\prime}=4 x \\
& y^{\prime}=x+3 y \\
& x(0)=1, \quad y(0)=2 .
\end{aligned}
$$

Answer:

The Laplace resolvent equation $(s I-A) \mathcal{L}(\mathbf{u})=\mathbf{u}(0)$ can be written out to find a 2×2 linear system for unknowns $\mathcal{L}(x(t)), \mathcal{L}(y(t))$:

$$
(s-4) \mathcal{L}(x)+(0) \mathcal{L}(y)=1, \quad(-1) \mathcal{L}(x)+(s-3) \mathcal{L}(y)=2 .
$$

Eimination or Cramer's rule applies to this system to solve for $\mathcal{L}(x(t))=\frac{1}{s-4}+\frac{1}{s-3}$. Then the backward table implies $x(t)=e^{4 t}+e^{3 t}$.
(1b) [30\%] Find $f(t)$ by partial fraction methods, given

$$
\mathcal{L}(f(t))=\frac{7 s^{2}+6 s+3}{s^{2}(s-1)^{2}}
$$

Answer:
$\mathcal{L}(f(t))=\frac{3}{s^{2}}+\frac{4}{(s+1)^{2}}=\mathcal{L}\left(3 t+4 t e^{t}\right)$ implies $f(t)=3 t+4 t e^{t}$.
(1c) [30\%] Solve for $f(t)$, given

$$
-\frac{d}{d s} \mathcal{L}(f(t))+2 \frac{d^{2}}{d s^{2}} \mathcal{L}(t f(t))=\frac{36}{(s+1)^{4}} .
$$

Answer:
Use the s-differentiation theorem, shift theorem and the backward Laplace table to get $2 \mathcal{L}\left(\left((-t)^{2}\right) f(t)\right)-$ $\mathcal{L}((-t)(t) f(t))=36 \mathcal{L}\left(t^{3} e^{-t} / 6\right)$. Lerch's theorem implies $3 t^{2} f(t)=6 t^{3} e^{-t}$. Then $f(t)=2 t e^{-t}$.

Use this page to start your solution. Attach extra pages as needed.

Name. \qquad
2. (Chapter 10) Complete all parts.
(2a) [60\%] Fill in the blank spaces in the Laplace table:

Forward Table

$f(t)$	$\mathcal{L}(f(t))$
t^{3}	$\frac{6}{s^{4}}$
$e^{3 t} \sin (2 t)$	
$t^{2} e^{-t / 3}$	
$t e^{-t} \sin (5 t)$	

Backward Table

$\mathcal{L}(f(t))$	$f(t)$
$\frac{3}{s^{2}+9}$	$\sin 3 t$
$\frac{s-2}{s^{2}-8 s+17}$	
$\frac{4}{(2 s+3)^{2}}$	
$\frac{s}{s^{2}+6 s+18}$	

Answer:
Forward: $\frac{2}{(s-3)^{2}+4}, \frac{54}{(3 s+1)^{3}},-\left.\frac{d}{d s} \frac{5}{s^{2}+25}\right|_{s \rightarrow s+1}=\frac{10(s+1)}{\left((s+1)^{2}+25\right)^{2}}$.
Backward: $e^{4 t} \cos (t)+2 e^{4 t} \sin (t), t e^{-3 t / 2}, e^{-3 t} \cos (3 t)-e^{-3 t} \sin (3 t)$.
(2b) [40\%] Find $\mathcal{L}(x(t))$, given $x(t)=t \mathbf{u}(t-2)+e^{t-1} \mathbf{u}(t-1)$, where \mathbf{u} is the unit step function defined by $\mathbf{u}(t)=1$ for $t \geq 0, \mathbf{u}(t)=0$ for $t<0$.

Answer:

Use the second shifting theorem

$$
\mathcal{L}(f(t-a) \mathbf{u}(t-a))=e^{-a s} \mathcal{L}(f(t)) .
$$

Write $x(t)=(t-2) \mathbf{u}(t-2)+2 \mathbf{u}(t-2)+e^{t-1} \mathbf{u}(t-1)$. Then $\mathcal{L}(x(t))=\mathcal{L}((t-2) \mathbf{u}(t-2))+2 \mathcal{L}(\mathbf{u}(t-$ $2)+\mathcal{L}\left(e^{t-1} \mathbf{u}(t-1)\right)=e^{-2 s} \mathcal{L}(t)+2 e^{-2 s} \mathcal{L}(1)+e^{-s} \mathcal{L}\left(e^{t}\right)=e^{-2 s}\left(\frac{1}{s^{2}}+\frac{2}{s}\right)+e^{-s} \frac{1}{s-1}$.

