\qquad

Differential Equations and Linear Algebra 2250
Midterm Exam 3 [7:30 and 12:25 lecture]
Sample

Scores
1.
2.
3.
4.
5.

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count $3 / 4$, answers count $1 / 4$.
Design: This exam is a rearrangement of the S2010 version 1 exam, for which there is an online key. Problems 3,4 of the S2010 exam appear here as 1, 2, which will be the content of Exam 3, Part I. The remaining problems $1,2,5$ from S2010 appear here as $3,4,5$, which will be the content of Exam 3, part II.

1. (Chapter 10) Complete all parts. It is assumed that you have memorized the basic 4 -item Laplace integral table and know the 8 basic rules for Laplace integrals. No other tables or theory are required to solve the problems below. If you don't know a table entry, then leave the expression unevaluated for partial credit.
(1a) [50\%] Display the details of Laplace's method to solve the system for $x(t)$. Don't waste time solving for $y(t)$!

$$
\begin{aligned}
& x^{\prime}=2 x+3 y, \\
& y^{\prime}=x, \\
& x(0)=4, \quad y(0)=0 .
\end{aligned}
$$

Answer:

The Laplace resolvent equation $(s I-A) \mathcal{L}(\mathbf{u})=\mathbf{u}(0)$ can be written out to find a 2×2 linear system for unknowns $\mathcal{L}(x(t)), \mathcal{L}(y(t))$. Cramer's rule applies to this system to solve for $\mathcal{L}(x(t))=\frac{4 s}{(s-3)(s+1)}$.
Then partial fractions and backward table methods determine $x(t)=3 e^{3 t}+e^{-t}$.
(1b) [25\%] Find $f(t)$ by partial fraction methods, given

$$
\mathcal{L}(f(t))=\frac{4 s+24}{s^{2}(s+4)}
$$

Answer:

$$
\mathcal{L}(f(t))=\frac{6}{s^{2}}+\frac{-1 / 2}{s}+\frac{1 / 2}{s+4}=\mathcal{L}\left(-1 / 2+6 t+(1 / 2) e^{-4 t}\right)
$$

(1c) $[25 \%]$ Solve for $f(t)$, given

$$
\frac{d^{2}}{d s^{2}} \mathcal{L}(f(t))=\frac{6}{s^{4}} .
$$

Answer:

Use the s-differentiation theorem and the backward Laplace table to get $(-t)^{2} f(t)=t^{3}$ or $f(t)=t$.

Name.
2. (Chapter 10) Complete all parts.
(2a) [50\%] Fill in the blank spaces in the Laplace table:

$f(t)$	t^{3}			$e^{-t} \sin 2 t$	$t^{3} e^{-t / 2}$
$\mathcal{L}(f(t))$	$\frac{6}{s^{4}}$	$\frac{1}{(3 s-2)^{3}}$	$\frac{s+1}{s^{2}+2 s+17}$		

Answer:
Left to right: $\frac{1}{54} t^{2} e^{2 t / 3}, e^{-t} \cos 4 t, \frac{2}{(s+1)^{2}+4}, \frac{96}{(1+2 s)^{4}}$.
(2b) [50\%] Find $\mathcal{L}(f(t))$, given $f(t)=u(t-\pi) \frac{\sin (t)}{e^{t}}$, where u is the unit step function.
Answer:
Remove the factor e^{-t}, to be inserted later. Use the second shifting theorem $\mathcal{L}(u(t-a) g(t))=$ $e^{-a s} \mathcal{L}(g(t+a))$. Then $\left.\mathcal{L}(\sin (t) u(t-\pi))\right)=e^{-\pi s} \mathcal{L}\left(\left.(\sin (t))\right|_{t \rightarrow t-\pi}\right)=e^{-\pi s} \mathcal{L}(\sin (t-\pi))=e^{-\pi s} \mathcal{L}(-\sin (t))=$ $\frac{-e^{-\pi s}}{s^{2}+1}$. When the factor e^{-t} is inserted, then the first shifting theorem applies to shift the final answer $s \rightarrow s+1$. Then $\mathcal{L}(f(t))=\left.\left(e^{-\pi s} \frac{-1}{s^{2}+1}\right)\right|_{s \rightarrow s+1}=\frac{-e^{-\pi(s+1)}}{(s+1)^{2}+1}$.

Name. \qquad
3. (Chapter 5) Complete all.
(3a) [40\%] Write the solution $x(t)$ of

$$
x^{\prime \prime}(t)+9 x(t)=60 \sin (2 t), \quad x(0)=x^{\prime}(0)=0,
$$

as the sum of two harmonic oscillations of different natural frequencies. To save time, don't convert to phase-amplitude form.

Answer:
$x(t)=-8 \sin (3 t)+12 \sin (2 t)$
(3b) [30\%] Determine the practical resonance frequency ω for the electric current equation

$$
2 I^{\prime \prime}+7 I^{\prime}+50 I=100 \omega \cos (\omega t) .
$$

Answer:
$\omega=1 / \sqrt{L C}=1 / \sqrt{2 / 50}=\sqrt{25}=5$.
(3c) [30\%] Use the variation of parameters formula (33) in Edwards-Penney,

$$
y_{p}(x)=y_{1}(x)\left(\int \frac{-y_{2}(x) f(x)}{W(x)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W(x)} d x\right)
$$

to display an explicit integral formula for a particular solution y_{p} of the equation

$$
y^{\prime \prime}(x)+2 y^{\prime}(x)+17 y(x)=e^{x^{2}} .
$$

To save time, don't try to evaluate integrals (it's impossible).
Answer:

$$
\begin{aligned}
& y_{p}(t)=y_{1}(x) \int k 1(x) f(x) d x+y_{2}(x) \int k 2(x) f(x) d x, f(x)=e^{x^{2}}, y_{1}(x)=e^{-x} \cos (4 x), y_{2}(x)= \\
& e^{-x} \sin (4 x), k_{1}(x)=-y_{2}(x) / W(x), k_{2}(x)=y_{1}(x) / W(x), W(x)=4 e^{-2 x} .
\end{aligned}
$$

Use this page to start your solution. Attach extra pages as needed.

Name.
4. (Chapter 5) Complete all.
(4a) $[60 \%]$ A homogeneous linear differential equation with constant coefficients has characteristic equation of order 8 with roots $0,0,2,2,2 i,-2 i, 5,5$ listed according to multiplicity. The corresponding non-homogeneous equation for unknown $y(x)$ has right side $f(x)=2 e^{x}+3 e^{2 x}+4 x^{2}+5 \sin 2 x$. Determine the undetermined coefficients shortest trial solution for y_{p}. To save time, do not evaluate the undetermined coefficients and do not find $y_{p}(x)$! Undocumented detail or guessing earns no credit.

Answer:

The atoms of $f(x)$ are $e^{x}, e^{2 x}, x^{2}, \sin 2 x$. Complete the list to 7 atoms, by adding the related atoms, to obtain 5 groups, each group having exactly one base atom: (1) e^{x}, (2) $e^{2 x}$, (3) $1, x, x^{2}$, (4) $\cos 2 x$, (5) $\sin 2 x$. The trial solution is a linear combination of 7 atoms, modified by rules to the new list (1) e^{x}, (2) $x^{2} e^{2 x}$, (3) x^{2}, x^{3}, x^{4}, (4) $x \cos 2 x$, (5) $x \sin 2 x$. The root 5 of the homogeneous equation is not used in the calculation.
(4b) [40\%] Let $f(x)=4 e^{x}+\sin ^{2} 2 x$. Find the characteristic polynomial of a constant-coefficient linear homogeneous differential equation which has $f(x)$ as a solution.

Answer:
Because $\sin ^{2}(2 x)=(1-\cos 4 x) / 2$ [identity $\cos 2 \theta=1-2 \sin ^{2} \theta$], then root $r=0$ and roots $r= \pm 4 i$ are used to produce the second term $\sin ^{2} 2 x$. Total roots: $1,0, \pm 4 i$ with product of the factors $(r-1)(r-0)\left(r^{2}+16\right)=r^{4}-r^{3}+16 r^{2}-16 r$. The DE: $y^{(4)}-y^{\prime \prime \prime}+16 y^{\prime \prime}-16 y^{\prime}=0$.

Name.
5. (Chapter 6) Complete all parts.
(5a) [30\%] Find the eigenvalues of the matrix $A=\left(\begin{array}{rrrr}1 & 4 & 1 & 12 \\ -4 & 1 & -3 & 15 \\ 0 & 0 & -1 & 6 \\ 0 & 0 & -2 & 7\end{array}\right)$. To save time, do not find eigenvectors!

Answer:
$1,5,1 \pm 4 i$
(5b) $[30 \%]$ Given $A=\left(\begin{array}{rrr}1 & -1 & 1 \\ 1 & 3 & -1 \\ 1 & 1 & 1\end{array}\right)$, which has eigenvalues $1,2,2$, find all eigenvectors for eigenvalue 2 .
Answer:
One frame sequence is required for $\lambda=2$. The sequence starts with $\left(\begin{array}{rrr}-1 & -1 & 1 \\ 1 & 1 & -1 \\ 1 & 1 & -1\end{array}\right)$, the last frame having two rows of zeros. There are two invented symbols t_{1}, t_{2} in the last frame algorithm answer $x_{1}=-t_{1}+t_{2}, x_{2}=t_{1}, x_{3}=t_{2}$. Taking $\partial_{t_{1}}$ and $\partial_{t_{2}}$ gives two eigenvectors, $\left(\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$.
(5c) $[20 \%]$ Suppose a 3×3 matrix A has eigenpairs

$$
\left(2,\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)\right), \quad\left(2,\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\right), \quad\left(0,\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right) .
$$

Display an invertible matrix P and a diagonal matrix D such that $A P=P D$.
Answer:
Define $P=\left(\begin{array}{lll}1 & 1 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1\end{array}\right), D=\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0\end{array}\right)$. Then $A P=P D$.
(5d) [20\%] Assume the vector general solution $\overrightarrow{\mathbf{u}}(t)$ of the 2×2 linear differential system $\overrightarrow{\mathbf{u}}^{\prime}=C \overrightarrow{\mathbf{u}}$ is given by

$$
\overrightarrow{\mathbf{u}}(t)=c_{1} e^{2 t}\binom{1}{-1}+c_{2} e^{2 t}\binom{2}{1} .
$$

Find the matrix C.
Answer:
The eigenvalues come from the exponents in the exponentials, 2 and 2. The eigenpairs are $\left(2,\binom{1}{-1}\right)$,
$\left(2,\binom{2}{1}\right)$. Then $P=\left(\begin{array}{rr}1 & 2 \\ -1 & 1\end{array}\right), D=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$. Solve $C P=P D$ to find $C=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$. The usual eigenpairs for C are the columns of the identity. But the eigenvalues are equal, therefore any linear combination of the two eigenvectors is also an eigenvector. This justifies the correctness of the strange eigenpairs given in the problem.

Use this page to start your solution. Attach extra pages as needed.

