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Math 2250 Extra Credit Problems
Chapter 3

S2013

Due date: The due date for these problems is week 13. Records are locked on that date and only corrected, never
appended. Credits apply only to chapter 3 and are not transferable to other chapters. Math problems can replace maple
lab problems. The maple lab 2 problems here can also replace math problems.

Submitted work. Please submit one stapled package per problem. Kindly label problems Extra Credit . Label

each problem with its corresponding problem number, e.g., Xc3.1-16 . You may attach this printed sheet to simplify
your work.

Problem XcL2.1. (Maple lab 2)

You may submit this problem only for score increases on maple lab 2.

Consider the linear differential equation u′+ku = ka(t), u(0) = u0, where a(t) = 1+sin(π(t−3)/12). Solve the equation
for u(t) and check your answer in maple. Use maple assist for integration.

Problem XcL2.2. (Maple lab 2)

You may submit this problem only for score increases on maple lab 2.

Consider the linear differential equation u′ + ku = ka(t), u(0) = u0, where a(t) = 1 + sin(π(t − 3)/12). Find the
steady-state periodic solution of this equation and check your answer in maple.

Problem Xc3.1-16. (Elimination)

Solve the system below using frame sequences and report one of the three possibilities: no solution, unique solution,
infinitely many solutions.

x + 5y + 6z = 3,
5x + 2y − 10z = 1,
8x + 17y + 8z = 5.

Problem Xc3.1-26. (Systems of equations)

Give an example of a 3× 3 system of equations which illustrates three planes, two of which intersect in a line, and that
line lies entirely in the third plane.

Problem Xc3.2-14. (Echelon systems)

Solve the system below using frame sequences and report one of the three possibilities: no solution, unique solution,
infinitely many solutions. Use variable list order x, y, z, w.

3x − 6y + z + 13w = 15,
3x − 6y + 3z + 21w = 21,
2x − 4y + 5z + 26w = 23.

Problem Xc3.2-24. (Three possibilities with symbols)

Solve the system below for all values of a, b using frame sequences and report one of the three possibilities: no solution,
unique solution, infinitely many solutions. If the system has a solution, then report the general solution.

x + ay = b,
ax + (a− b)y = a.



Problem Xc3.3-10. (RREF)

Show the frame sequence steps to rref(A) and attach a maple answer check (or do the whole problem in maple).

A =

 1 −4 −2
3 −12 1
2 −8 5



Problem Xc3.3-20. (RREF)

Show the frame sequence steps to rref(A) and attach a maple answer check (or do the whole problem in maple).

A =

 1 −4 −2 4 0
3 −12 1 5 0
2 −8 5 5 1



Problem Xc3.4-20. (Vector general solution)

Find the general solution in vector form x, expressed as a linear combination of column vectors using symbols t1, t2, t3
. . . (as many symbols as needed for the free variables).

x1 − x2 + 7x4 + 3x5 = 0,
x3 − x4 − 2x5 = 0,

0 = 0,
0 = 0,
0 = 0.

Problem Xc3.4-40. (Superposition)

(a) Add the two systems below to prove that sums of solutions are again solutions. You will show that x =

(
x1 + x2
y1 + y2

)
is a solution, given that

(
x1
y1

)
and

(
x2
y2

)
are solutions of the homogeneous equation.{

ax1 + by1 = 0,
cx1 + dy1 = 0.

{
ax2 + by2 = 0,
cx2 + dy2 = 0.

(b) Add the two systems below to prove the superposition principle. You will show that x =

(
x1 + x3
y1 + y3

)
is a solution,

given that

(
x1
y1

)
solves the homogeneous problem and

(
x3
y3

)
solves the non-homogeneous problem.{

ax1 + by1 = 0,
cx1 + dy1 = 0.

{
ax3 + by3 = e,
cx3 + dy3 = f.

Problem Xc3.5-16. (Inverse by frame sequence)

Calculate the frame sequence from C = (( : A) , I) to rref(C) and report A−1. Perform a hand answer check for the
inverse matrix. No maple please, all with pencil and paper.

A =

 1 −2 2
3 0 1
1 −1 2



Problem Xc3.5-44a. (Inverses and frame sequences I)

(a) Suppose A is 8× 8 and 60 entries are ones. Explain why A−1 does not exist.
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(b) Suppose that A is invertible and 3× 3. A frame sequence is started with A and gives final frame (not the rref) 1 1 2
0 1 −1
0 0 3


The steps used to arrive at the final frame are (1) combo(1,2,-3), (2) swap(2,3), (3) combo(1,2,-1), (4) combo(2,3,1),
(5) mult(2,-1). Find the matrix A.

Problem Xc3.5-44b. (Inverses and frame sequences II)

Invent a particular 3 × 3 invertible matrix A1 and display a frame sequence A1 to A6 (or slightly longer) involving
documented steps of combo, swap and mult (one of each at least). Then write the frame sequence in the form

A6 = E5E4E3E2E1A1

where E1, . . . , E5 are the elementary matrices representing the combo, swap and mult operations. Finally, check your
answer by multiplying out the right side of the above identity, showing the multiplication gives A6 (which should be
rref(A1) = I).

Example. The same problem but for 2× 2 matrix A1.

A1 =

(
0 3
2 4

)
A2 =

(
0 3
1 2

)
, mult(2,1/2), E1 =

(
1 0
0 1/2

)
A3 =

(
1 2
0 3

)
, swap(1,2), E2 =

(
0 1
1 0

)
A4 =

(
1 2
0 1

)
, mult(2,1/3), E3 =

(
1 0
0 1/3

)
A5 =

(
1 0
0 1

)
, combo(2,1,-2), E4 =

(
1 −2
0 1

)
Then

A5 = E4A4

= E4E3A3

= E4E3E2A2

= E4E3E2E1A1

Multiply out the four elementary matrices by hand to get

E4E3E2E1 =

(
−2/3 1/2

1/3 0

)
and then

E4E3E2E1A1 =

(
1 0
0 1

)
= I

This last check can be done in maple by defining each 2 × 2 elementary matrix, e.g., A1:=matrix([[0,3],[2,4]]); and then

with(linalg):

evalm(E4&*E3&*E2&*E1&*A1);

The last line gives the identity, which is A5, and that completes the answer check.

Problem Xc3.6-6. (Determinants and the four rules)

Calculate det(A) using only the four rules triang, swap, combo, mult. Check the answer in maple.

A =


1 −4 −2 4 0
3 −12 1 5 0
2 −8 5 5 1
0 −8 5 5 1
0 0 5 5 1


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Problem Xc3.6-20. (Determinants, hybrid rules)

Calculate det(A) using the four rules triang, swap, combo, mult plus the cofactor rule. Check the answer in maple.

A =


1 −4 −2 4 0
3 −12 1 5 0
0 −12 0 5 0
0 −12 1 0 0
2 −8 5 5 1



Problem Xc3.6-32. (Cramer’s Rule)

Calculate x, y and z using Cramer’s rule. Check the answer in maple. 1 −2 2
3 0 1
1 −1 2

 x
y
z

 =

 1
2
3



Problem Xc3.6-40. (Adjugate formula)

Find the inverse of the matrix A using the formula A−1 =
adjugate

determinant
.

A =


1 −4 −2 4
3 −1 1 5
0 −1 0 1
2 0 −1 0



Problem Xc3.6-40. (Adjugate formula)

Find the entry in row 4 and column 2 of the adjugate matrix for A, using only determinants.

A =


1 −4 −2 4
3 −1 −1 3
0 −1 0 1
2 0 −1 0



Problem Xc3.6-60. (Induction)

Assume that B1 = 1 and B2 = 2. Assume Bk+2 = 2Bk +Bk+1 for each integer k = 1, 2, 3, . . ..

Let Qn denote the statement that Bk = 2k−1 for 1 ≤ k ≤ n. Prove by mathematical induction that all statements Qn

are true.

Problem note: You must prove that Q1 and Q2 are true, individually. Mathematical induction then applies to the
sequence of statements Q3, Q4, . . . , in short, to statements Pj = Qj+2, j = 1, 2, 3, . . ..

End of extra credit problems chapter 3.
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