
Newton’s Laws
The ideal models of a particle or point mass constrained to move along the x-axis, or the
motion of a projectile or satellite, have been studied from Newton’s second law

F = ma.(1)

In the mks system of units, F is the force in Newtons, m is the mass in kilograms and a
is the acceleration in meters per second per second.

The closely-related Newton universal gravitation law

F = G
m1m2

R2
(2)

is used in in conjunction with (1) to determine the system’s constant value g of gravitational
acceleration. The masses m1 and m2 have centroids at a distance R. For the earth,
g = 9.8 m/s2 is commonly used.



Velocity and Acceleration
The position, velocity and acceleration of a particle moving along an axis are func-
tions of time t. Notations vary; we use the following symbols, where primes denote t-
differentiation.

x = x(t) The particle’s position at time t.
v = x′(t) The particle’s velocity at time t.
a = x′′(t) The particle’s acceleration at

time t.
x(0) The initial position.
v(0) The initial velocity. Synonym

x′(0) is also used.



Free Fall with Constant Gravity
Falling bodies, e.g., an object launched up or down from a tall building, are ideal cases, in
which air resistance and other external forces are ignored. The acceleration of the body is
assumed to be a constant g. The model is

x′′(t) = −g, x(0) = x0, x′(0) = v0.(3)

The initial position x0 and the initial velocity v0 must be specified. The value of g in
mks units is g = 9.8 m/s2. The symbol x is the distance from the ground (x = 0).
The symbol t is the time in seconds.
Solution of the falling body problem
Equation (3) can be solved by the method of quadrature to give the explicit solution

x(t) = −
g

2
t2 + x0 + v0t.(4)

Plotting
Typical plots can be made by the following maple code.
X:=unapply(-9.8*tˆ2+100+(50)*t,t); #v(0)=50m/s,x(0)=100m
plot(X(t),t=0..7);



Air Resistance Effects
The inclusion in a differential equation model of terms accounting for air resistance has
historically two distinct models. The first is linear resistance, in which the force F due to
air resistance is assumed to be proportional to the velocity v:

F ∝ v.(5)

It is known that linear resistance is appropriate only for slowly moving objects. The second
model is nonlinear resistance, modeled originally by Sir Isaac Newton himself as F =
kv2. The literature considers a generalized nonlinear resistance assumption

F ∝ v|v|p(6)

where 0 < p ≤ 1 depends upon the speed of the object through the air; p ≈ 0 is a low
speed and p ≈ 1 is a high speed. It will suffice for illustration purposes to treat just the
two cases F ∝ v and F ∝ v|v|.



Linear Air Resistance
The model is determined by the sum of the forces due to air resistance and gravity,
Fair + Fgravity, which by Newton’s second law must equal F = mx′′(t), giving
the differential equation

mx′′(t) = −kx′(t)−mg.(7)

Equation (7) written in terms of the velocity v = x′(t) becomes

v′(t) = −(k/m)v(t)− g.(8)

This equation has a solution v(t) which limits at t = ∞ to a finite terminal velocity
|v∞| = mg/k,. Physically, this limit is the equilibrium solution of (8), which is the
observable steady state of the model. A quadrature applied to x′(t) = v(t) solves (7).
Then

v(t) = −
mg

k
+

(
v(0) +

mg

k

)
e−kt/m,

x(t) = x(0)−
mg

k
t +

m

k

(
v(0) +

mg

k

) (
1− e−kt/m

)
.

(9)



Nonlinear Air Resistance. The model, which applies primarily to rapidly moving objects,
is obtained by the same method as the linear model, replacing the linear resistance term
kx′(t) by the nonlinear term kx′(t)|x′(t)|. The model:

mx′′(t) = −kx′(t)|x′(t)| −mg.(10)

The velocity v = x′(t) model is

v′(t) = −(k/m)v(t)|v(t)| − g.(11)

The model applies in particular to parachute flight and to certain projectile problems, like
an arrow or bullet fired straight up.



Upward Launch. Separable equation (11) in the case v(0) > 0 for a launch upward
becomes v′(t) = −(k/m)v2(t)− g. The solution for v(0) > 0 is given below
in (12). The equation x′(t) = v(t) can be solved by quadrature. Then for some
constants c and d

v(t) =

√
mg

k
tan

√kg

m
(c− t)

 ,

x(t) = d +
m

k
ln

∣∣∣∣∣∣cos
√kg

m
(c− t)

∣∣∣∣∣∣ .
(12)

Downward Launch. The case v(0) < 0 for an object launched downward or dropped
will use the equation v′(t) = (k/m)v2(t)− g. Then for some constants c and d

v(t) =

√
mg

k
tanh

√kg

m
(c− t)

 ,

x(t) = d−
m

k
ln

∣∣∣∣∣∣cosh
√kg

m
(c− t)

∣∣∣∣∣∣ .
(13)



The hyperbolic functions appearing in (13) are defined by

coshu = 1

2
(eu + e−u) Hyperbolic cosine.

sinhu = 1

2
(eu − e−u) Hyperbolic sine.

tanhu =
eu − e−u

eu + e−u
Hyperbolic tangent.
Identity tanhu =
sinhu/ coshu.

The model applies to parachute problems in particular. Equation (13) and the limit formula
lim|x|→∞ tanhx = 1 imply a terminal velocity

|v∞| =
√
mg

k
.

The value is exactly the square root of the linear model terminal velocity. Without air
resistance effects, e.g., the falling body model (3), the velocity is allowed to increase to
unrealistic speeds.


