How to Solve Linear Differential Equations

- Definition: Euler Base Atom, Euler Solution Atom
- Independence of Atoms
- Construction of the General Solution from a List of Distinct Atoms
- Euler's Theorems
 - Euler's Basic Theorem
 - Euler's Multiplicity Theorem
 - A Shortcut Method
- Examples
- Main Theorems on Atoms and Linear Differential Equations

Euler Solution Atoms of Homogeneous Linear Differential Equations

Definition

- An Euler base atom is one of $1, \cos bx, \sin bx, e^{ax}, e^{ax} \cos bx, e^{ax} \sin bx$, with b > 0 and $a \neq 0$.
- ullet An Euler solution **atom** equals x^n times a base atom, where $n\geq 0$ is an integer.

Details and Remarks

- Euler's formula $e^{i\theta} = \cos \theta + i \sin \theta$ implies that an atom is constructed from the complex expression $x^n e^{ax+ibx}$ by taking real and imaginary parts.
- The powers $1, x, x^2, \dots, x^k$ are Euler solution atoms.
- The term that makes up an atom has coefficient 1, therefore $2e^x$ is not an atom, but the 2 can be stripped off to create the atom e^x . Zero is not an atom. Linear combinations like $2x + 3x^2$ are not atoms, but the individual terms x and x^2 are indeed atoms. Terms like $-e^x$, e^{-x^2} , $x^{5/2}\cos x$, $\ln|x|$ and $x/(1+x^2)$ are not atoms.

Independence

Linear algebra defines a list of functions f_1, \ldots, f_k to be **linearly independent** if and only if the representation of the zero function as a linear combination of the listed functions is uniquely represented, that is,

$$0=c_1f_1(x)+c_2f_2(x)+\cdots+c_kf_k(x)$$
 for all x

implies $c_1=c_2=\cdots=c_k=0$.

Independence and Atoms

Theorem 1 (Atoms are Independent)

A list of finitely many distinct Euler solution atoms is linearly independent.

Theorem 2 (Powers are Independent)

The list of distinct atoms $1, x, x^2, \ldots, x^k$ is linearly independent. And all of its sublists are linearly independent.

Construction of the General Solution from a List of Distinct Atoms

• Picard's theorem says that the homogeneous constant-coefficient linear differential equation

$$y^{(n)} + p_{n-1}y^{(n-1)} + \dots + p_1y' + p_0y = 0$$

has solution space S of dimension n. Picard's theorem reduces the general solution problem to finding n linearly independent solutions.

• Euler's theorem infra says that the required n independent solutions can be selected as atoms. The theorem explains how to construct a list of distinct atoms, each of which is a solution of the differential equation, from the roots of the characteristic equation [Definition: The left side is the characteristic polynomial.]

$$r^n + p_{n-1}r^{n-1} + \cdots + p_1r + p_0 = 0.$$

- The **Fundamental Theorem of Algebra** is part of the Doctoral thesis of Carl Friedrich Gauss (1777–1855): An nth order polynomial equation has exactly n roots, real or complex, counted according to multiplicities. Therefore, the characteristic equation has exactly n roots, counting multiplicities.
- General Solution. Because the list of atoms constructed by Euler's theorem has *n* distinct elements, then this list of independent atoms forms a **basis** for the general solution of the differential equation, giving

$$y = c_1(\text{atom } 1) + \cdots + c_n(\text{atom } n)$$
.

Symbols c_1, \ldots, c_n are arbitrary coefficients. In particular, each atom listed is itself a solution of the differential equation.

Euler's Basic Theorem

Theorem 3 (L. Euler)

The exponential $y=e^{r_1x}$ is a solution of a constant-coefficient linear homogeneous differential of the nth order if and only if $r=r_1$ is a root of the characteristic equation.

- ullet If $r_1=a$ is a real root, then Euler's Theorem constructs one real solution atom e^{ax} .
- ullet If $r_1=a+ib$ is a complex root (b>0), then Euler's Theorem constructs two real solution atoms

$$e^{ax}\cos bx$$
, $e^{ax}\sin bx$.

Derivation is from Euler's complex solution

$$e^{r_1x} = e^{ax}\cos bx + ie^{ax}\sin bx.$$

The real and imaginary parts of this complex solution are real solutions of the differential equation. The conjugate pair of roots a + ib and a - ib produce the same two atoms, which explains the simplification above.

Euler's Multiplicity Theorem

Definition. A root $r=r_1$ of a polynomial equation p(r)=0 has **multiplicity** k provided $(r-r_1)^k$ divides p(r) but $(r-r_1)^{k+1}$ does not divide p(r). The calculus equivalent is $\frac{d^jp}{dr^j}(r_1)=0$ for j=0,..,k-1 and $\frac{d^kp}{dr^k}(r_1)\neq 0$.

Theorem 4 (L. Euler)

The expression $y=x^ke^{r_1x}$ is a solution of a constant-coefficient linear homogeneous differential of the nth order if and only if $(r-r_1)^{k+1}$ divides the characteristic polynomial.

A Shortcut for using Euler's Theorems

Given a real root r_1 or complex root $r_1 = a + ib$, apply Euler's first theorem to obtain the base atom e^{r_1x} , or the pair of base atoms $e^{ax}\cos bx$, $e^{ax}\sin bx$. Multiply each base item by powers $1, x, x^2, \ldots$, until the number of atoms obtained equals the multiplicity of root r_1 .

Atom List Examples

1. If root r = -3 has multiplicity 4, then the atom list is

$$e^{-3x}, xe^{-3x}, x^2e^{-3x}, x^3e^{-3x}.$$

The list is constructed by multiplying the base atom e^{-3x} by powers $1, x, x^2, x^3$. The multiplicity 4 of the root equals the number of constructed atoms.

2. If r=-3+2i is a root of the characteristic equation, then the base atoms for this root (both -3+2i and -3-2i counted) are

$$e^{-3x}\cos 2x$$
, $e^{-3x}\sin 2x$.

If root r = -3 + 2i has multiplicity 3, then the two real atoms are multiplied by 1, x, x^2 to obtain a total of 6 atoms

$$e^{-3x}\cos 2x, \; xe^{-3x}\cos 2x, \; x^2e^{-3x}\cos 2x, \ e^{-3x}\sin 2x, \; xe^{-3x}\sin 2x, \; x^2e^{-3x}\sin 2x.$$

The number of atoms generated for each base atom is 3, which equals the multiplicity of the root -3 + 2i.

Theorem 5 (Homogeneous Solution y_h and Euler Solution Atoms)

Linear homogeneous nth order differential equations with constant coefficients have general solution $y_h(x)$ equal to a linear combination of n distinct atoms.

Theorem 6 (Particular Solution y_p and Euler Solution Atoms)

A linear non-homogeneous differential equation with constant coefficients a having forcing term f(x) equal to a linear combination of atoms has a particular solution $y_p(x)$ which is a linear combination of atoms.

Theorem 7 (General Solution y and Euler Solution Atoms)

A linear non-homogeneous differential equation with constant coefficients having forcing term

$$f(x) =$$
 a linear combination of atoms

has general solution

$$y(x) = y_h(x) + y_p(x) =$$
 a linear combination of atoms.

Proofs

The first theorem follows from Picard's theorem, Euler's theorem and independence of atoms. The second follows from the method of undetermined coefficients, *infra*. The third theorem follows from the first two.