
Chapter 4

First Order Numerical
Methods

Contents

4.1 Solving y′ = F (x) Numerically 209

4.2 Solving y′ = f(x, y) Numerically 221

4.3 Error in Numerical Methods 229

4.4 Computing π, ln 2 and e 235

4.5 Earth to the Moon 241

4.6 Skydiving . 247

4.7 Lunar Lander 251

4.8 Comets . 256

4.1 Solving y′ = F (x) Numerically

Studied here is the creation of numerical tables and graphics for the
solution of the initial value problem

y′ = F (x), y(x0) = y0.(1)

To illustrate, consider the initial value problem

y′ = 3x2 − 1, y(0) = 2.

Quadrature gives the explicit symbolic solution

y(x) = x3 − x+ 2.

In Figure 1, evaluation of y(x) from x = 0 to x = 1 in increments of 0.1
gives the xy-table, whose entries represent the dots for the connect-
the-dots graphic.

210 First Order Numerical Methods

x

y
x y

0.0 2.000
0.1 1.901
0.2 1.808
0.3 1.727
0.4 1.664
0.5 1.625

x y
0.6 1.616
0.7 1.643
0.8 1.712
0.9 1.829
1.0 2.000

Figure 1. A table of xy-values for y = x3 − x+ 2.
The graphic represents the table’s rows as dots, which are joined to make the
connect-the-dots graphic.

The interesting case is when quadrature in (1) encounters an integral∫ x
x0
F (t)dt that cannot be evaluated to provide an explicit symbolic equa-

tion for y(x). Nevertheless, y(x) can be computed numerically.

Applied here are numerical integration rules from calculus: rectangular,
trapezoidal and Simpson; see page 215 for a review of the three rules. The
ideas lead to the numerical methods of Euler, Heun and Runge-Kutta,
which appear later in this chapter.

How to make an xy-table. Given y′ = F (x), y(x0) = y0, a table
of xy-values is created as follows. The x-values are equally spaced a
distance h > 0 apart. Each x, y pair in the table represents a dot in the
connect-the-dots graphic of the explicit solution

y(x) = y0 +
∫ x

x0

F (t)dt.

First table entry. The initial condition y(x0) = y0 identifies two con-
stants x0, y0 to be used for the first table entry. For example, y(0) = 2
identifies X = 0, Y = 2.

Second table entry. The second table pair X, Y is computed from
the first table pair x0, y0 and a recurrence. The X-value is given by
X = x0 + h, while the Y -value is given by the numerical integration
method being used, in accordance with Table 1 (the table is justified on
page 218).

Table 1. Three numerical integration methods.

Rectangular Rule Y = y0 + hF (x0)

Trapezoidal Rule Y = y0 +
h

2
(F (x0) + F (x0 + h))

Simpson’s Rule Y = y0 +
h

6
(F (x0) + 4F (x0 + h/2) + F (x0 + h)))

Third and higher table entries. They are computed by letting x0,
y0 be the current table entry, then the next table entry X, Y is found
exactly as outlined above for the second table entry.

4.1 Solving y′ = F (x) Numerically 211

It is expected, and normal, to compute the table entries using computer
assist. In simple cases, a calculator will suffice. If F is complicated or
Simpson’s rule is used, then a computer algebra system or a numerical
laboratory is recommended. See Example 2, page 212.

How to make a connect-the-dots graphic. To illustrate, con-
sider the xy-pairs below, which are to represent the dots in the connect-
the-dots graphic.

(0.0, 2.000), (0.1, 1.901), (0.2, 1.808), (0.3, 1.727), (0.4, 1.664),

(0.5, 1.625), (0.6, 1.616), (0.7, 1.643), (0.8, 1.712), (0.9, 1.829),

(1.0, 2.000).

Hand drawing. The method, unchanged from high school mathematics
courses, is to plot the points as dots on an xy-coordinate system, then
connect the dots with line segments. See Figure 2.

y

x
Figure 2. A computer-generated graphic made to
simulate a hand-drawn connect-the-dots graphic.

Computer algebra system graphic. The computer algebra system
maple has a primitive syntax especially made for connect-the-dots graph-
ics. Below, Dots is a list of xy-pairs.

Maple V.1
Dots:=[0.0, 2.000], [0.1, 1.901], [0.2, 1.808],

[0.3, 1.727], [0.4, 1.664], [0.5, 1.625],
[0.6, 1.616], [0.7, 1.643], [0.8, 1.712],
[0.9, 1.829], [1.0, 2.000]:

plot([Dots]);

The plotting of points only can be accomplished by adding options into
the plot command: type=point and symbol=circle will suffice.

Numerical laboratory graphic. The computer programs matlab,
octave and scilab provide primitive plotting facilities, as follows.

X=[0,.1,.2,.3,.4,.5,.6,.7,.8,.9,1]
Y=[2.000, 1.901, 1.808, 1.727, 1.664, 1.625,

1.616, 1.643, 1.712, 1.829, 2.000]
plot(X,Y)

1 Example (Rectangular Rule) Consider y′ = 3x2 − 2x, y(0) = 0. Apply
the rectangular rule to make an xy-table for y(x) from x = 0 to x = 2 in

212 First Order Numerical Methods

steps of h = 0.2. Graph the approximate solution and the exact solution
y(x) = x3 − x2 for 0 ≤ x ≤ 2.

Solution: The exact solution y = x3−x2 is verified directly, by differentiation.
It was obtained by quadrature applied to y′ = 3x2 − 2x, y(0) = 0.

The first table entry 0, 0 is used to obtain the second table entry X = 0.2,
Y = 0 as follows.

x0 = 0, y0 = 0 The current table entry, row 1.

X = x0 + h The next table entry, row 2.

= 0.2, Use x0 = 0, h = 0.2.

Y = y0 + hF (x0) Rectangular rule.

= 0 + 0.2(0). Use h = 0.2, F (x) = 3x2 − 2x.

The remaining 9 rows of the table are completed by calculator, following the
pattern above for the second table entry. The result:

Table 2. Rectangular rule solution and exact values for y′ = 3x2− 2x,
y(0) = 0 on 0 ≤ x ≤ 2, step size h = 0.2.

x y-rect y-exact
0.0 0.000 0.000
0.2 0.000 −0.032
0.4 −0.056 −0.096
0.6 −0.120 −0.144
0.8 −0.144 −0.128
1.0 −0.080 0.000

x y-rect y-exact
1.2 0.120 0.288
1.4 0.504 0.784
1.6 1.120 1.536
1.8 2.016 2.592
2.0 3.240 4.000

The xy-values from the table are used to obtain the comparison plot in
Figure 3.
y Exact

x

Approximate Figure 3. Comparison plot of the
rectangular rule solution and the
exact solution y = x3 − x2 for
y′ = 3x2 − 2x, y(0) = 0.

2 Example (Trapezoidal Rule) Consider y′ = cosx + 2x, y(0) = 0. Apply
both the rectangular and trapezoidal rules to make an xy-table for y(x) from
x = 0 to x = π in steps of h = π/10. Compare the two approximations in
a graphic for 0 ≤ x ≤ π.

Solution: The exact solution y = sinx+ x2 is verified directly, by differentia-
tion. It will be seen that the trapezoidal solution is nearly identical, graphically,
to the exact solution.

The table will have 11 rows. The three columns are x, y-rectangular and y-
trapezoidal. The first table entry 0, 0, 0 is used to obtain the second table entry
0.1π, 0.31415927, 0.40516728 as follows.

Rectangular rule second entry.

4.1 Solving y′ = F (x) Numerically 213

Y = y0 + hF (x0) Rectangular rule.

= 0 + h(cos 0 + 2(0)) Use F (x) = cosx+ 2x, x0 = y0 = 0.

= 0.31415927. Use h = 0.1π = 0.31415927.

Trapezoidal rule second entry.

Y = y0 + 0.5h(F (x0) + F (x0 + h)) Trapezoidal rule.

= 0 + 0.05π(cos 0 + cosh+ 2h) Use x0 = y0 = 0, F (x) = cosx+ 2x.

= 0.40516728. Use h = 0.1π.

The remaining 9 rows of the table are completed by calculator, following the
pattern above for the second table entry. The result:

Table 3. Rectangular and trapezoidal solutions for y′ = cosx + 2x,
y(0) = 0 on 0 ≤ x ≤ π, step size h = 0.1π.

x y-rect y-trap
0.000000 0.000000 0.000000
0.314159 0.314159 0.405167
0.628319 0.810335 0.977727
0.942478 1.459279 1.690617
1.256637 2.236113 2.522358
1.570796 3.122762 3.459163

x y-rect y-trap
1.884956 4.109723 4.496279
2.199115 5.196995 5.638458
2.513274 6.394081 6.899490
2.827433 7.719058 8.300851
3.141593 9.196803 9.869604

y

x

Figure 4. Comparison plot on 0 ≤ x ≤ π
of the rectangular (solid) and
trapezoidal (dotted) solutions for
y′ = cosx+ 2x, y(0) = 0 for h = 0.1π.

Computer algebra system. The maple implementation for Example
2 appears below. Part of the interface is repetitive execution of a group,
which is used here to avoid loop constructs. The code produces lists
Dots1 and Dots2 which contain Rectangular (left panel) and Trapezoidal
(right panel) approximations.
Rectangular algorithm

Group 1, initialize.

F:=x->evalf(cos(x) + 2*x):

x0:=0:y0:=0:h:=0.1*Pi:

Dots1:=[x0,y0]:

Group 2, repeat 10 times

Y:=y0+h*F(x0):

x0:=x0+h:y0:=evalf(Y):

Dots1:=Dots1,[x0,y0];

Group 3, plot.

plot([Dots1]);

Trapezoidal algorithm

Group 1, initialize.

F:=x->evalf(cos(x) + 2*x):

x0:=0:y0:=0:h:=0.1*Pi:

Dots2:=[x0,y0]:

Group 2, repeat 10 times

Y:=y0+h*(F(x0)+F(x0+h))/2:

x0:=x0+h:y0:=evalf(Y):

Dots2:=Dots2,[x0,y0];

Group 3, plot.

plot([Dots2]);

214 First Order Numerical Methods

3 Example (Simpson’s Rule) Consider y′ = e−x
2
, y(0) = 0. Apply both

the rectangular and Simpson rules to make an xy-table for y(x) from x = 0
to x = 1 in steps of h = 0.1. In the table, include values for the exact

solution y(x) =
√
π

2 erf(x). Compare the two approximations in a graphic
for 0.8 ≤ x ≤ 1.0.

Solution: The error function erf(x) = 2√
π

∫ x
0
e−t

2
dt is a library function

available in maple, mathematica, matlab and other computing platforms. It is
known that the integral cannot be expressed in terms of elementary functions.

The xy-table. There will be 11 rows, for x = 0 to x = 1 in steps of h = 0.1.
There are four columns: x, y-rectangular, y-Simpson, y-exact.

The first row arises from y(0) = 0, giving the four entries 0, 0, 0, 0. It will
be shown how to obtain the second row by calculator methods, for the two
algorithms rectangular and Simpson.

Rectangular rule second entry.

Y 1 = y0 + hF (x0) Rectangular rule.

= 0 + h(e0) Use F (x) = e−x
2
, x0 = y0 = 0.

= 0.1. Use h = 0.1.

Simpson rule second entry.

Y 2 = y0 + h
6 (F (x0) + 4F (x1) + F (x2)) Simpson rule, x1 = x0 + h/2,

x2 = x0 + h.

= 0 + h
6 (e0 + 4e.5 + e.1) Use F (x) = e−x

2
, x0 = y0 = 0.

= 0.09966770540. Use h = 0.1.

Exact solution second entry.
The numerical work requires the tabulated function erf(x). The maple details:

x0:=0:y0:=0:h:=0.1: Given.
c:=sqrt(Pi)/2 Conversion factor.
Exact:=x->y0+c*erf(x): Exact solution y = y0 +

∫ x
0
e−t

2
dt.

Y3:=Exact(x0+h); Calculate exact answer.
Y3 := .09966766428

Table 4. Rectangular and Simpson solutions for y′ = e−x
2
, y(0) = 0

on 0 ≤ x ≤ π, step size h = 0.1.

x y-rect y-Simp y-exact
0.0 0.00000000 0.00000000 0.00000000
0.1 0.10000000 0.09966771 0.09966766
0.2 0.19900498 0.19736511 0.19736503
0.3 0.29508393 0.29123799 0.29123788
0.4 0.38647705 0.37965297 0.37965284
0.5 0.47169142 0.46128114 0.46128101
0.6 0.54957150 0.53515366 0.53515353
0.7 0.61933914 0.60068579 0.60068567
0.8 0.68060178 0.65766996 0.65766986
0.9 0.73333102 0.70624159 0.70624152
1.0 0.77781682 0.74682418 0.74682413

4.1 Solving y′ = F (x) Numerically 215

Rect

0.64

0.8

10.8
x

y

Simp Figure 5. Comparison plot
on 0.8 ≤ x ≤ 1.0 of the
rectangular (dotted) and
Simpson (solid) solutions for
y′ = e−x

2
, y(0) = 0 for h = 0.1.

Computer algebra system. The maple implementation for Example 3 ap-
pears below. Part of the interface is repetitive execution of a group, which
avoids loop constructs. The code produces two lists Dots1 and Dots2 which
contain Rectangular (left panel) and Simpson (right panel) approximations.

Rectangular algorithm
Group 1, initialize.
F:=x->evalf(exp(-x*x)):
x0:=0:y0:=0:h:=0.1:
Dots1:=[x0,y0]:

Group 2, repeat 10 times
Y:=evalf(y0+h*F(x0)):
x0:=x0+h:y0:=Y:
Dots1:=Dots1,[x0,y0];

Group 3, plot.
plot([Dots1]);

Simpson algorithm
Group 1, initialize.
F:=x->evalf(exp(-x*x)):
x0:=0:y0:=0:h:=0.1:
Dots2:=[x0,y0]:

Group 2, repeat 10 times
Y:=evalf(y0+h*(F(x0)+

4*F(x0+h/2)+F(x0+h))/6):
x0:=x0+h:y0:=Y:
Dots2:=Dots2,[x0,y0];

Group 3, plot.
plot([Dots2]);

Review of Numerical Integration

Reproduced here are calculus topics: the rectangular rule, the trape-
zoidal rule and Simpson’s rule for the numerical approximation of
an integral

∫ b
a F (x)dx. The approximations are valid for b − a small.

Larger intervals must be subdivided, then the rule applies to the small
subdivisions.

Rectangular Rule. The approximation uses Eu-
ler’s idea of replacing the integrand by a constant. The
value of the integral is approximately the area of a rect-
angle of width b− a and height F (a).

F

x
a b

y

∫ b

a
F (x)dx ≈ (b− a)F (a).(2)

216 First Order Numerical Methods

Trapezoidal Rule. The rule replaces the integrand
F (x) by a linear function L(x) which connects the pla-
nar points (a, F (a)), (b, F (b)). The value of the integral
is approximately the area under the curve L, which is
the area of a trapezoid.

F

x
a b

y

L

∫ b

a
F (x)dx ≈ b− a

2
(F (a) + F (b)) .(3)

Simpson’s Rule. The rule replaces the integrand
F (x) by a quadratic polynomial Q(x) which connects
the planar points (a, F (a)), ((a + b)/2, F ((a + b)/2)),
(b, F (b)). The value of the integral is approximately
the area under the quadratic curve Q.

F

x

y

a b

Q

∫ b

a
F (x)dx ≈ b− a

6

(
F (a) + 4F

(
a+ b

2

)
+ F (b)

)
.(4)

Simpson’s Polynomial Rule. If Q(x) is constant, or a linear,
quadratic or cubic polynomial, then (proof on page 217)∫ b

a
Q(x)dx =

b− a
6

(
Q(a) + 4Q

(
a+ b

2

)
+Q(b)

)
.(5)

Integrals of linear, quadratic and cubic polynomials can be evaluated
exactly using Simpson’s polynomial rule (5); see Example 4, page 216.

Remarks on Simpson’s Rule. The right side of (4) is exactly the
integral of Q(x), which is evaluated by equation (5). The appearance
of F instead of Q on the right in equation (4) is due to the relations
Q(a) = F (a), Q((a + b)/2) = F ((a + b)/2), Q(b) = F (b), which arise
from the requirement that Q connect three points along curve F .

The quadratic interpolation polynomial Q(x) is determined uniquely
from the three data points; see Quadratic Interpolant, page 217, for
a formula for Q and a derivation. It is interesting that Simpson’s rule
depends only upon the uniqueness and not upon the actual formula for
Q!

4 Example (Polynomial Quadrature) Apply Simpson’s polynomial rule (5)
to verify

∫ 2
1 (x3 − 16x2 + 4)dx = −355/12.

Solution: The application proceeds as follows:

I =
∫ 2

1
Q(x)dx Evaluate integral I using Q(x) =

x3 − 16x2 + 4.

4.1 Solving y′ = F (x) Numerically 217

=
2− 1

6
(Q(1) + 4Q(3/2) +Q(2)) Apply Simpson’s polynomial rule (5).

=
1
6

(−11 + 4(−229/8)− 52) Use Q(x) = x3 − 16x2 + 4.

= −355
12

. Equality verified.

Simpson’s Polynomial Rule Proof. Let Q(x) be a linear, quadratic or cubic
polynomial. It will be verified that∫ b

a

Q(x)dx =
b− a

6

(
Q(a) + 4Q

(
a+ b

2

)
+Q(b)

)
.(6)

If the formula holds for polynomial Q and c is a constant, then the formula also
holds for the polynomial cQ. Similarly, if the formula holds for polynomials Q1

and Q2, then it also holds for Q1 + Q2. Consequently, it suffices to show that
the formula is true for the special polynomials 1, x, x2 and x3, because then it
holds for all combinations Q(x) = c0 + c1x+ c2x

2 + c3x
3.

Only the special case Q(x) = x3 will be treated here. The other cases are left
to the exercises. The details:

RHS =
b− a

6

(
Q(a) + 4Q

(
a+ b

2

)
+Q(b)

)
Evaluate the right side of
equation (6).

=
b− a

6

(
a3 +

1
2

(a+ b)3 + b3
)

Substitute Q(x) = x3.

=
b− a

6

(
3
2

)(
a3 + a2b+ ab2 + b3

)
Expand (a+ b)3. Simplify.

=
1
4
(
b4 − a4

)
, Multiply and simplify.

LHS =
∫ b
a
Q(x)dx Evaluate the left hand side

(LHS) of equation (6).

=
∫ b
a
x3dx Substitute Q(x) = x3.

=
1
4
(
b4 − a4

)
Evaluate.

= RHS. Compare with the RHS.

This completes the proof of Simpson’s polynomial rule.

Quadratic Interpolant Q. Given a < b and the three data points
(a, Y0), ((a + b)/2, Y1)), (b, Y2)), then there is a unique quadratic curve
Q(X) which connects the points, given by

Q(X) = Y0 + (4Y1 − Y2 − 3Y0)
X − a
b− a

+ (2Y2 + 2Y0 − 4Y1)
(X − a)2

(b− a)2
.

(7)

Proof: The term quadratic is meant loosely: it can be a constant or linear
function as well.

218 First Order Numerical Methods

Uniqueness of the interpolant Q is established by subtracting two candidates to
obtain a polynomial P of degree at most two which vanishes at three distinct
points. By Rolle’s theorem, P ′ vanishes at two distinct points and hence P ′′

vanishes at one point. Writing P (X) = c0 + c1X+ c2X
2 shows c2 = 0 and then

c1 = c0 = 0, or briefly, P ≡ 0. Hence the two candidates are identical.

It remains to verify the given formula (7). The details are presented as two
lemmas.1 The first lemma contains the essential ideas. The second simply
translates the variables.

Lemma 1 Given y1 and y2, define A = y2−y1, B = 2y1−y2. Then the quadratic
y = x(Ax+B) fits the data items (0, 0), (1, y1), (2, 2y2).

Lemma 2 Given Y0, Y1 and Y2, define y1 = Y1−Y0, y2 = 1
2 (Y2−Y0), A = y2−y1,

B = 2y1−y2 and x = 2(X−a)/(b−a). Then quadratic Y (X) = Y0 +x(Ax+B)
fits the data items (a, Y0), ((a+ b)/2, Y1), (b, Y2).

To verify the first lemma, the formula y = x(Ax + B) is tested to go through
the given data points (0, 0), (1, y1) and (2, 2y2). For example, the last pair is
tested by the steps

y(2) = 2(2A+B) Apply y = x(Ax+B) with x = 2.

= 4y2 − 4y1 + 4y1 − 2y2 Use A = y2 − y1 and B = 2y1 − y2.

= 2y2. Therefore, the quadratic fits data item
(2, 2y2).

The other two data items are tested similarly, details omitted here.

To verify the second lemma, observe that it is just a change of variables in the
first lemma, Y = Y0 + y. The data fit is checked as follows:

Y (b) = Y0 + y(2) Apply formulas Y (X) = Y0 + y(x), y(x) =
x(Ax+B) with X = b and x = 2.

= Y0 + 2y2 Apply data fit y(2) = 2y2.

= Y2. The quadratic fits the data item (b, Y2).

The other two items are checked similarly, details omitted here. This completes
the proof of the two lemmas. The formula for Q is obtained from the second
lemma as Q = Y0 +Bx+Ax2 with substitutions for A, B and x performed to
obtain the given equation for Q in terms of Y0, Y1, Y2, a, b and X.

Justification of Table 1: The method of quadrature applied to y′ = F (x),
y(x0) = y0 gives an explicit solution y(x) involving the integral of F . Specialize
this solution formula to x = x0 + h where h > 0. Then

y(x0 + h) = y0 +
∫ x0+h

x0

F (t)dt.

All three methods in Table 1 are derived by replacment of the integral above
by the corresponding approximation taken from the rectangular, trapezoidal or

1What’s a lemma? It’s a helper theorem, used to dissect long proofs into short
pieces.

4.1 Solving y′ = F (x) Numerically 219

Simpson method on page 215. For example, the trapezoidal method gives∫ x0+h

x0

F (t)dt ≈ h

2
(F (x0) + F (x0 + h)) ,

whereupon replacement into the formula for y gives the entry in Table 1 as

Y ≈ y(x0 + h) ≈ y0 +
h

2
(F (x0) + F (x0 + h)) .

This completes the justification of Table 1.

Exercises 4.1

Connect-the-Dots. Make a numeri-
cal table of 6 rows and a connect-the-
dots graphic for the following.

1. y = 2x+ 5, x = 0 to x = 1

2. y = 3x+ 5, x = 0 to x = 2

3. y = 2x2 + 5, x = 0 to x = 1

4. y = 3x2 + 5, x = 0 to x = 2

5. y = sinx, x = 0 to x = π/2

6. y = sin 2x, x = 0 to x = π/4

7. y = x ln |1 + x|, x = 0 to x = 2

8. y = x ln |1 + 2x|, x = 0 to x = 1

9. y = xex, x = 0 to x = 1

10. y = x2ex, x = 0 to x = 1/2

Rectangular Rule. Apply the rectan-
gular rule to make an xy-table for y(x)
with 11 rows and step size h = 0.1.
Graph the approximate solution and
the exact solution. Follow example 1.

11. y′ = 2x, y(0) = 5.

12. y′ = 3x2, y(0) = 5.

13. y′ = 3x2 + 2x, y(0) = 4.

14. y′ = 3x2 + 4x3, y(0) = 4.

15. y′ = sinx, y(0) = 1.

16. y′ = 2 sin 2x, y(0) = 1.

17. y′ = ln(1 + x), y(0) = 1. Exact
(1 + x) ln |1 + x|+ 1− x.

18. y′ = 2 ln(1 + 2x), y(0) = 1. Exact
(1 + 2x) ln |1 + 2x|+ 1− 2x.

19. y′ = xex, y(0) = 1. Exact xex −
ex + 2.

20. y′ = 2x2e2x, y(0) = 4. Exact
2x2ex − 4xex + 4 ex.

Trapezoidal Rule. Apply the trape-
zoidal rule to make an xy-table for
y(x) with 6 rows and step size h = 0.2.
Graph the approximate solution and
the exact solution. Follow example 2.

21. y′ = 2x, y(0) = 1.

22. y′ = 3x2, y(0) = 1.

23. y′ = 3x2 + 2x, y(0) = 2.

24. y′ = 3x2 + 4x3, y(0) = 2.

25. y′ = sinx, y(0) = 4.

26. y′ = 2 sin 2x, y(0) = 4.

27. y′ = ln(1 + x), y(0) = 1. Exact
(1 + x) ln |1 + x|+ 1− x.

28. y′ = 2 ln(1 + 2x), y(0) = 1. Exact
(1 + 2x) ln |1 + 2x|+ 1− 2x.

29. y′ = xex, y(0) = 1. Exact xex −
ex + 2.

30. y′ = 2x2e2x, y(0) = 4. Exact
2x2ex − 4xex + 4 ex.

220 First Order Numerical Methods

Simpson Rule. Apply Simpson’s rule
to make an xy-table for y(x) with 6
rows and step size h = 0.2. Graph the
approximate solution and the exact so-
lution. Follow example 3.

31. y′ = 2x, y(0) = 2.

32. y′ = 3x2, y(0) = 2.

33. y′ = 3x2 + 2x, y(0) = 3.

34. y′ = 3x2 + 4x3, y(0) = 3.

35. y′ = sinx, y(0) = 5.

36. y′ = 2 sin 2x, y(0) = 5.

37. y′ = ln(1 + x), y(0) = 1. Exact
(1 + x) ln |1 + x|+ 1− x.

38. y′ = 2 ln(1 + 2x), y(0) = 1. Exact
(1 + 2x) ln |1 + 2x|+ 1− 2x.

39. y′ = xex, y(0) = 1. Exact xex −
ex + 2.

40. y′ = 2x2e2x, y(0) = 4. Exact
2x2ex − 4xex + 4 ex.

Simpson’s Rule. The following ex-
ercises use formulas and techniques
found in the proof on page 217 and in
Example 4, page 216.

41. Verify with Simpson’s rule (5)
for cubic polynomials the equality∫ 2

1
(x3 + 16x2 + 4)dx = 541/12.

42. Verify with Simpson’s rule (5)
for cubic polynomials the equality∫ 2

1
(x3 + x+ 14)dx = 77/4.

43. Let f(x) satisfy f(0) = 1,
f(1/2) = 6/5, f(1) = 3/4. Ap-
ply Simpson’s rule with one divi-
sion to verify that

∫ 1

0
f(x)dx ≈

131/120.

44. Let f(x) satisfy f(0) = −1,
f(1/2) = 1, f(1) = 2. Apply
Simpson’s rule with one division
to verify that

∫ 1

0
f(x)dx ≈ 5/6.

45. Verify Simpson’s equality (5), as-
suming Q(x) = 1 and Q(x) = x.

46. Verify Simpson’s equality (5), as-
suming Q(x) = x2.

Quadratic Interpolation. The fol-
lowing exercises use formulas and tech-
niques from the proof on page 217.

47. Verify directly that the quadratic
polynomial y = x(7 − 4x) goes
through the points (0, 0), (1, 3),
(2,−2).

48. Verify directly that the quadratic
polynomial y = x(8 − 5x) goes
through the points (0, 0), (1, 3),
(2,−4).

49. Compute the quadratic interpo-
lation polynomial Q(x) which
goes through the points (0, 1),
(0.5, 1.2), (1, 0.75).

50. Compute the quadratic interpo-
lation polynomial Q(x) which
goes through the points (0,−1),
(0.5, 1), (1, 2).

51. Verify the remaining cases in
Lemma 1, page 218.

52. Verify the remaining cases in
Lemma 2, page 218.

4.2 Solving y′ = f(x, y) Numerically 221

4.2 Solving y′ = f (x, y) Numerically

The numerical solution of the initial value problem

y′(x) = f(x, y(x)), y(x0) = y0(1)

is studied here by three basic methods. In each case, the current table
entry x0, y0 plus step size h is used to find the next table entry X,
Y . Define X = x0 + h and let Y be defined below, according to the
algorithm selected (Euler, Heun, RK4)2. The motivation for the three
methods appears on page 226.

Euler’s method.
Y = y0 + hf(x0, y0).(2)

Heun’s method.

y1 = y0 + hf(x0, y0),

Y = y0 +
h

2
(f(x0, y0) + f(x0 + h, y1)) .

(3)

Runge-Kutta RK4 method.

k1 = hf(x0, y0),
k2 = hf(x0 + h/2, y0 + k1/2),
k3 = hf(x0 + h/2, y0 + k2/2),
k4 = hf(x0 + h, y0 + k3),

Y = y0 +
k1 + 2k2 + 2k3 + k4

6
.

(4)

The last quantity Y contains an average of six terms, where two appear
in duplicate: (k1 + k2 + k2 + k3 + k3 + k4)/6. A similar average appears
in Simpson’s rule.

Relationship to calculus methods. If the differential equation
(1) is specialized to the equation y′(x) = F (x), y(x0) = y0, to agree
with the previous section, then f(x, y) = F (x) is independent of y and
the three methods of Euler, Heun and RK4 reduce to the rectangular,
trapezoidal and Simpson rules.
To justify the reduction in the case of Heun’s method, start with the as-
sumption f(x, y) = F (x) and observe that by independence of y, variable
Y1 is never used. Compute as follows:

Y = y0 + h
2 (f(x0, y0) + f(x0 + h, Y1)) Apply equation (3).

= y0 + h
2 (F (x0) + F (x0 + h)). Use f(x, y) = F (x).

The right side of the last equation is exactly the trapezoidal rule.
2Euler is pronounced oiler. Heun rhymes with coin. Runge rhymes with run key.

222 First Order Numerical Methods

Examples and Methods

5 Example (Euler’s Method) Solve y′ = −y + 1 − x, y(0) = 3 by Euler’s
method for x = 0 to x = 1 in steps of h = 0.1. Produce a table of values
which compares approximate and exact solutions. Graph both the exact
solution y = 2− x+ e−x and the approximate solution.

Solution: Exact solution. The homogeneous solution is yh = ce−x. A
particular solution yp = 2 − x is found by the extended equilibrium method.
Initial condition y(0) = 3 gives c = 1 and then y = yh + yp = 2− x+ e−x.

Table of xy-values. The table starts because of y(0) = 3 with the two values
X = 0, Y = 3. The X-values will be X = 0 to X = 1 in increments of h = 1/10,
making 11 rows total. The Y -values are computed from

Y = y0 + hf(x0, y0) Euler’s method.

= y0 + h(−y0 + 1− x0) Use f(x, y) = −y + 1− x.

= 0.9y0 + 0.1(1− x0) Use h = 0.1.

The pair x0, y0 represents the two entries in the current row of the table. The
next table pair X, Y is given by X = x0+h, Y = 0.9y0+0.1(1−x0). It is normal
in a computation to do the second pair by hand, then use computing machinery
to reproduce the hand result and finish the computation of the remaining table
rows. Here’s the second pair:

X = x0 + h Definition of X-values.

= 0.1, Substitute x0 = 0 and h = 0.1.

Y = 0.9y0 + 0.1(1− x0), The simplified recurrence.

= 0.9(3) + 0.1(1− 0) Substitute for row 1, x0 = 0, y0 = 3.

= 2.8. Second row found: X = 0.1, Y = 2.8.

By the same process, the third row is X = 0.2, Y = 2.61. This gives the xy-table
below, in which the exact values from y = 2− x+ e−x are also tabulated.

Table 5. Euler’s method applied with h = 0.1 on 0 ≤ x ≤ 1 to the
problem y′ = −y + 1− x, y(0) = 3.

x y Exact
0.0 3.00000 3.0000000
0.1 2.80000 2.8048374
0.2 2.61000 2.6187308
0.3 2.42900 2.4408182
0.4 2.25610 2.2703200
0.5 2.09049 2.1065307

x y Exact
0.6 1.93144 1.9488116
0.7 1.77830 1.7965853
0.8 1.63047 1.6493290
0.9 1.48742 1.5065697
1.0 1.34868 1.3678794

See page 224 for maple code which automates Euler’s method. The approximate
solution graphed in Figure 6 is nearly identical to the exact solution y = 2 −
x+ e−x. The maple plot code for Figure 6:

L:=[0.0,3.00000],[0.1,2.80000],[0.2,2.61000],[0.3,2.42900],
[0.4,2.25610],[0.5,2.09049],[0.6,1.93144],[0.7,1.77830],
[0.8,1.63047],[0.9,1.48742],[1.0,1.34868]:

plot({[L],2-x+exp(-x)},x=0..1);

4.2 Solving y′ = f(x, y) Numerically 223

10
1.3

3.0

Figure 6. Euler approximate solution for
y′ = −y + 1− x, y(0) = 3 is nearly identical
to the exact solution y = 2− x+ e−x.

6 Example (Euler and Heun Methods) Solve y′ = −y + 1 − x, y(0) = 3
by both Euler’s method and Heun’s method for x = 0 to x = 1 in steps of
h = 0.1. Produce a table of values which compares approximate and exact
solutions.

Solution: Table of xy-values. The Euler method was applied in Example 5.
Heun’s method will be documented here. The first pair is 0, 3. The second pair
X, Y will be computed by hand below.

X = x0 + h Definition of X-values.

= 0.1, Substitute x0 = 0 and h = 0.1.

Y1 = y0 + hf(x0, y0) First Heun formula.

= y0 + 0.1(−y0 + 1− x0) Use f(x, y) = −y + 1− x.

= 2.8, Row 1 gives x0, y0. Same as the
Euler method value.

Y = y0 + h(f(x0, y0) + f(x0 + h, Y1))/2, Second Heun formula.

= 3 + 0.05(−3 + 1− 0− 2.8 + 1− 0.1) Use x0 = 0, y0 = 3, Y1 = 2.8.

= 2.805.

Therefore, the second row is X = 0.1, Y = 2.805. By the same process, the
third row is X = 0.2, Y = 2.619025. This gives the xy-table below, in which
the exact values from y = 2− x+ e−x are also tabulated.

Table 6. Euler and Heun methods applied with h = 0.1 on 0 ≤ x ≤ 1
to the problem y′ = −y + 1− x, y(0) = 3.

x y-Euler y-Heun Exact
0.0 3.00000 3.00000 3.0000000
0.1 2.80000 2.80500 2.8048374
0.2 2.61000 2.61903 2.6187308
0.3 2.42900 2.44122 2.4408182
0.4 2.25610 2.27080 2.2703200
0.5 2.09049 2.10708 2.1065307
0.6 1.93144 1.94940 1.9488116
0.7 1.77830 1.79721 1.7965853
0.8 1.63047 1.64998 1.6493290
0.9 1.48742 1.50723 1.5065697
1.0 1.34868 1.36854 1.3678794

224 First Order Numerical Methods

Computer algebra system. The implementation for maple appears below.
Part of the interface is repetitive execution of a group, which is used here to
avoid loop constructs. The code produces a list L which contains Euler (left
panel) or Heun (right panel) approximations.
Euler algorithm
Group 1, initialize.
f:=(x,y)->-y+1-x:
x0:=0:y0:=3:h:=.1:L:=[x0,y0]:
Group 2, repeat 10 times
Y:=y0+h*f(x0,y0):
x0:=x0+h:y0:=Y:L:=L,[x0,y0];
Group 3, plot.
plot([L]);

Heun algorithm
Group 1, initialize.
f:=(x,y)->-y+1-x:
x0:=0:y0:=3:h:=.1:L:=[x0,y0]
Group 2, repeat 10 times
Y:=y0+h*f(x0,y0):
Y:=y0+h*(f(x0,y0)+f(x0+h,Y))/2:
x0:=x0+h:y0:=Y:L:=L,[x0,y0];
Group 3, plot.
plot([L]);

Numerical laboratory. The implementation of the Heun method for matlab,
octave and scilab will be described. The code is written into files f.m and
heun.m, which must reside in a default directory. Then [X,Y]=heun(0,3,1,10)
produces the xy-table. The graphic is made with plot(X,Y).

File f.m: function yp = f(x,y)
yp= -y+1-x;

File heun.m: function [X,Y] = heun(x0,y0,x1,n)
h=(x1-x0)/n;X=x0;Y=y0;
for i=1:n;
y1= y0+h*f(x0,y0);
y0= y0+h*(f(x0,y0)+f(x0+h,y1))/2;
x0=x0+h;
X=[X;x0];Y=[Y;y0];
end

7 Example (Euler, Heun and RK4 Methods) Solve the initial value prob-
lem y′ = −y + 1− x, y(0) = 3 by Euler’s method, Heun’s method and the
RK4 method for x = 0 to x = 1 in steps of h = 0.1. Produce a table of
values which compares approximate and exact solutions.

Solution: Table of xy-values. The Euler and Heun methods were applied in
Example 6. The Runge-Kutta method (RK4) will be illustrated here. The first
pair is 0, 3. The second pair X, Y will be computed by hand calculator.

X = x0 + h Definition of X-values.

= 0.1, Substitute x0 = 0 and h = 0.1.

k1 = hf(x0, y0) First RK4 formula.

= 0.1(−y0 + 1− x0) Use f(x, y) = −y + 1− x.

= −0.2, Row 1 supplies x0 = 0, y0 = 3.

k2 = hf(x0 + h/2, y0 + k1/2) Second RK4 formula.

= 0.1f(0.05, 2.9)

= −0.195,

k3 = hf(x0 + h/2, y0 + k2/2) Third RK4 formula.

4.2 Solving y′ = f(x, y) Numerically 225

= 0.1f(0.05, 2.9025)
= −0.19525,

k4 = hf(x0 + h, y0 + k3) Fourth RK4 formula.

= 0.1f(0.1, 2.80475)
= −0.190475,

Y = y0 + 1
6 (k1 + 2k2 + 2k2 + k4), Last RK4 formula.

= 3 + 1
6 (−1.170975) Use x0 = 0, y0 = 3, Y1 = 2.8.

= 2.8048375.

Therefore, the second row is X = 0.1, Y = 2.8048375. Continuing, the third
row is X = 0.2, Y = 2.6187309. The Euler and Heun steps were done in the
previous example and recorded in Table 6. We have computed the first three
rows of the xy-table below, in which exact values y = 2 − x + e−x are also
tabulated.

Table 7. Euler, Heun and RK4 methods applied with h = 0.1 on
0 ≤ x ≤ 1 to the problem y′ = −y + 1− x, y(0) = 3.

x y-Euler y-Heun y-RK4 Exact
0.0 3.00000 3.00000 3.0000000 3.0000000
0.1 2.80000 2.80500 2.8048375 2.8048374
0.2 2.61000 2.61903 2.6187309 2.6187308
0.3 2.42900 2.44122 2.4408184 2.4408182
0.4 2.25610 2.27080 2.2703203 2.2703200
0.5 2.09049 2.10708 2.1065309 2.1065307
0.6 1.93144 1.94940 1.9488119 1.9488116
0.7 1.77830 1.79721 1.7965856 1.7965853
0.8 1.63047 1.64998 1.6493293 1.6493290
0.9 1.48742 1.50723 1.5065700 1.5065697
1.0 1.34868 1.36854 1.3678798 1.3678794

Computer algebra system. The implementation of RK4 for maple appears
below, as a modification of the code for Example 6.

Group 2, repeat 10 times.
k1:=h*f(x0,y0):
k2:=h*f(x0+h/2,y0+k1/2):
k3:=h*f(x0+h/2,y0+k2/2):
k4:=h*f(x0+h,y0+k3):
Y:=y0+(k1+2*k2+2*k3+k4)/6:
x0:=x0+h:y0:=Y:L:=L,[x0,y0];

Numerical laboratory. The implementation of RK4 for matlab, octave
and scilab appears below, to be added to the code for Example 6. The
code is written into file rk4.m, which must reside in a default directory. Then
[X,Y]=rk4(0,3,1,10) produces the xy-table.

function [X,Y] = rk4(x0,y0,x1,n)
h=(x1-x0)/n;X=x0;Y=y0;
for i=1:n;

226 First Order Numerical Methods

k1=h*f(x0,y0);
k2=h*f(x0+h/2,y0+k1/2);
k3=h*f(x0+h/2,y0+k2/2);
k4=h*f(x0+h,y0+k3);
y0=y0+(k1+2*k2+2*k3+k4)/6;
x0=x0+h;
X=[X;x0];Y=[Y;y0];
end

Motivation for the three methods. The entry point to the study
is the equivalent integral equation

y(x) = y0 +
∫ x

x0

f(t, y(t))dt.(5)

The ideas can be explained by replacement of the integral in (5) by
the rectangular, trapezoidal or Simpson rule. Unknown values of y that
appear are subsequently replaced by suitable approximations. These
approximations, known as predictors and correctors, are defined as
follows from the integral formula y(b) = y(a) +

∫ b
a f(x, y(x))dx, by as-

suming the integrand is a constant C (the idea is due to Euler).

Predictor Y = y(a) + (b− a)f(a, Y ∗). Given an estimate or an exact
value Y ∗ for y(a), then variable Y predicts y(b). The approxima-
tion assumes the integrand in (5) constantly C = f(a, Y ∗).

Corrector Y = y(a) + (b− a)f(b, Y ∗∗). Given an estimate or an exact
value Y ∗∗ for y(b), then variable Y corrects y(b). The approxima-
tion assumes the integrand in (5) constantly C = f(b, Y ∗∗).

Euler’s method. Replace in (5) x = x0 + h and apply the rectangular
rule to the integral. The resulting approximation is known as Euler’s
method:

y(x0 + h) ≈ Y = y0 + hf(x0, y0).(6)

Heun’s method. Replace in (5) x = x0 + h and apply the trapezoidal
rule to the integral, to get

y(x0 + h) ≈ y0 +
h

2
(f(x0, y(x0) + f(x0 + h, y(x0 + h))) .

The troublesome expressions are y(x0) and y(x0 + h). The first is y0.
The second can be estimated by the predictor y0 + hf(x0, y0). The
resulting approximation is known as Heun’s method or the modified
Euler method:

Y1 = y0 + hf(x0, y0),

y(x0 + h) ≈ Y = y0 +
h

2
(f(x0, y0) + f(x0 + h, Y1)) .

(7)

4.2 Solving y′ = f(x, y) Numerically 227

RK4 method. Replace in (5) x = x0 + h and apply Simpson’s rule to
the integral. This gives y(x0 + h) ≈ y0 + S where the Simpson estimate
S is given by

S =
h

6
(f(x0, y(x0) + 4f(M,y(M)) + f(x0 + h, y(x0 + h)))(8)

and M = x0 + h/2 is the midpoint of [x0, x0 + h]. The troublesome
expressions in S are y(x0), y(M) and y(x0 +h). The work of Runge and
Kutta shows that

• Expression y(x0) is replaced by y0.

• Expression y(M) can be replaced by either Y1 or Y2, where Y1 =
y0 + 0.5hf(x0, y0) is a predictor and Y2 = y0 + 0.5hf(M,Y1) is a
corrector.

• Expression y(x0 + h) can be replaced by Y3 = y0 + hf(M,Y2).
This replacement arises from the predictor y(x0 + h) ≈ y(M) +
0.5hf(M,y(M)) by using corrector y(M) ≈ y0 +0.5hf(M,y(M))
and then replacing y(M) by Y2.

The formulas of Runge-Kutta result by using the above replacements
for y(x0), y(M) and y(x0 + h), with the caveat that f(M,y(M)) gets
replaced by the average of f(M,Y1) and f(M,Y2). In detail,

6S = hf(x0, y(x0) + 4hf(M,y(M)) + hf(x0 + h, y(x0 + h))

≈ hf(x0, y0) + 4h
f(M,Y1) + f(M,Y2)

2
+ hf(x0 + h, Y3)

= k1 + 2k2 + 2k3 + k4

where the RK4 quantities k1, k2, k3, k4 are defined by (4), page 221.
The resulting approximation is known as the RK4 method.

Exercises 4.2

Euler’s Method. Apply Euler’s
method to make an xy-table for y(x)
with 11 rows and step size h = 0.1.
Graph the approximate solution and
the exact solution. Follow Example 5.

1. y′ = 2 + y, y(0) = 5. Exact
y(x) = −2 + 7ex.

2. y′ = 3 + y, y(0) = 5. Exact
y(x) = −3 + 8ex.

3. y′ = e−x + y, y(0) = 4. Exact
y(x) = − 1

2e
−x + 9

2e
x.

4. y′ = 3e−2x + y, y(0) = 4. Exact
y(x) = −e−2x + 5ex.

5. y′ = y sinx, y(0) = 1. Exact
y(x) = e1−cos x.

6. y′ = 2y sin 2x, y(0) = 1. Exact
y(x) = e1−cos 2x.

7. y′ = y/(1 + x), y(0) = 1. Exact
y(x) = 1 + x.

8. y′ = y(x)/(1 + 2x), y(0) = 1. Ex-
act y(x) =

√
1 + 2x.

228 First Order Numerical Methods

9. y′ = yxex, y(0) = 1. Exact
y(x) = eu(x), u(x) = 1+(x−1)ex.

10. y′ = 2y(x2 + x)e2x, y(0) = 1. Ex-
act y(x) = eu(x), u(x) = x2e2x.

Heun’s Method. Apply Heun’s
method to make an xy-table for y(x)
with 6 rows and step size h = 0.2.
Graph the approximate solution and
the exact solution. Follow Example 6.

11. y′ = 2 + y, y(0) = 5. Exact
y(x) = −2 + 7ex.

12. y′ = 3 + y, y(0) = 5. Exact
y(x) = −3 + 8ex.

13. y′ = e−x + y, y(0) = 4. Exact
y(x) = − 1

2e
−x + 9

2e
x.

14. y′ = 3e−2x + y, y(0) = 4. Exact
y(x) = −e−2x + 5ex.

15. y′ = y sinx, y(0) = 1. Exact
y(x) = e1−cos x.

16. y′ = 2y sin 2x, y(0) = 1. Exact
y(x) = e1−cos 2x.

17. y′ = y/(1 + x), y(0) = 1. Exact
y(x) = 1 + x.

18. y′ = y(x)/(1 + 2x), y(0) = 1. Ex-
act y(x) =

√
1 + 2x.

19. y′ = yxex, y(0) = 1. Exact
y(x) = eu(x), u(x) = 1+(x−1)ex.

20. y′ = 2y(x2 + x)e2x, y(0) = 1. Ex-
act y(x) = eu(x), u(x) = x2e2x.

RK4 Method. Apply the Runge-
Kutta method (RK4) to make an xy-
table for y(x) with 6 rows and step size
h = 0.2. Graph the approximate so-
lution and the exact solution. Follow
Example 7.

21. y′ = 2 + y, y(0) = 5. Exact
y(x) = −2 + 7ex.

22. y′ = 3 + y, y(0) = 5. Exact
y(x) = −3 + 8ex.

23. y′ = e−x + y, y(0) = 4. Exact
y(x) = − 1

2e
−x + 9

2e
x.

24. y′ = 3e−2x + y, y(0) = 4. Exact
y(x) = −e−2x + 5ex.

25. y′ = y sinx, y(0) = 1. Exact
y(x) = e1−cos x.

26. y′ = 2y sin 2x, y(0) = 1. Exact
y(x) = e1−cos 2x.

27. y′ = y/(1 + x), y(0) = 1. Exact
y(x) = 1 + x.

28. y′ = y(x)/(1 + 2x), y(0) = 1. Ex-
act y(x) =

√
1 + 2x.

29. y′ = yxex, y(0) = 1. Exact
y(x) = eu(x), u(x) = 1+(x−1)ex.

30. y′ = 2y(x2 + x)e2x, y(0) = 1. Ex-
act y(x) = eu(x), u(x) = x2e2x.

Euler and RK4 Methods. Apply the
Euler method and the Runge-Kutta
method (RK4) to make a table with
6 rows and step size h = 0.1. The ta-
ble columns are x, y1, y2, y where y1
is the Euler approximation, y2 is the
RK4 approximation and y is the exact
solution. Graph y1, y2, y.

31. y′ = 1
2 (y − 2)2, y(0) = 3. Exact

y(x) = 2x−6
x−2 .

32. y′ = 1
2 (y − 3)2, y(0) = 4. Exact

y(x) = 3x−8
x−2 .

33. y′ = x3/y2, y(2) = 3. Exact
y(x) = 1

2
3
√

6x4 + 120.

34. y′ = x5/y2, y(2) = 3. Exact
y(x) = 1

2
3
√

4x6 − 40.

35. y′ = 2x(1 + y2), y(1) = 1. Exact
y(x) = tan(x2 − 1 + π/4).

36. y′ = 3y2/3, y(0) = 1. Exact
y(x) = (x+ 1)3.

37. y′ = 1 + y2, y(0) = 0. Exact
y(x) = tanx.

38. y′ = 1 + y2, y(0) = 1. Exact
y(x) = tan(x+ π/4).

4.3 Error in Numerical Methods 229

4.3 Error in Numerical Methods

Numerical Errors

There are several kinds of errors made in numerical work. Studied here
are cumulative error, local error, roundoff error and truncation error.
The Landau order notation is introduced.

Cumulative Error. This error measurement is commonly used in
displays like Table 8, in which approximate and exact solution columns
already appear. In such applications, the cumulative error is the differ-
ence of the approximate and exact columns. The exact solution refers
to y(x) defined by y′ = f(x, y), y(x0) = y0 (x0 = 0, y0 = 3 from line 1 of
Table 8). The approximate solution refers to the y-values computed
by the algorithm (column 2 in Table 8). A precise definition of the cu-
mulative error E is given in terms of the exact solution y(x): given
table entry X, Y , then E = |y(X)− Y |.

Table 8. Cumulative error.
A third column, cumulative error, is added to an existing xy-table of approx-
imate and exact solutions. The cumulative error is computed by the formula
E = |y2 − y1|, where y1 is the approximation and y2 is the exact value.

x y-Approx y-Exact Error
0.0 3.00000 3.0000000 0.0000000
0.1 2.80000 2.8048374 0.0048374
0.2 2.61000 2.6187308 0.0087308
0.3 2.42900 2.4408182 0.0118182

Local Error. This error is made by one algorithm step in going from
table entry x1, y1 to the next table entry x2, y2. It can be precisely
defined in terms of the solution u(x) to u′ = f(x, u), u(x1) = y1 by the
formula

Eloc = |u(x2)− y2|.

Noteworthy is that u(x) 6= y(x). To explain, the exact solution y(x)
solves y′ = f(x, y), y(x0) = y0 where x0, y0 is the first table entry,
while u(x) solves u′ = f(x, u) for a different set of initial conditions. In
particular, an xy-table of approximate and exact solution values, like
Table 8, does not contain enough information to determine the local
error!

To illustrate the ideas, consider y′ = 2y, y(0) = 1 with exact solution

230 First Order Numerical Methods

y = e2x. Using Euler’s method with step size h = 0.1 gives the table

x y-approx y-exact
0 1 1
0.1 1.2 1.2214028
0.2 1.44 1.4918247

To find the local error for line 2 to line 3 requires solving u′ = 2u,
u(0.1) = 1.2, and then evaluating E = |u(0.2)−1.4918247|. We find that
u(x) = 1.2e2(x−0.1) and then E = |1.2e0.2 − 1.4918247| = 0.026141390.

Roundoff Error. Also called rounding error, the roundoff error is the
difference between the calculated approximation of a number to finitely
many digits and its exact value in terms of infinitely many digits. The
technical error is made by computers due to the representation of float-
ing point numbers, which limits the number of significant digits in any
computation. Integer arithmetic will normally generate no errors, unless
integer overflow occurs, i.e., x+ y or xy can result in an integer larger
than the machine can represent. Floating point arithmetic usually gen-
erates errors because of results that must be rounded to give a machine
representation. To illustrate, 8-digit precision requires a = 1.00000005
be represented as â = 1.0000001 and b = 1.00000004 be represented as
b̂ = 1. Then 2a + 2b = 4.00000018, which rounds to 4.0000002, while
2â+ 2b̂ = 4.0000001. The roundoff error in this example is 0.0000001.

For numerical methods, this translates into fewer roundoff errors for
h = 0.1 than for h = 0.001, because the number of arithmetic operations
increases 1000-fold for h = 0.001. The payoff in increased accuracy
expected for a change in step size from h = 0.1 to h = 0.001 may be less
than theoretically possible, because the roundoff errors accumulate to
cancel the effects of decreased step size. Positive and negative roundoff
errors tend to cancel, leading to situations where a thousand-fold step
size change causes only a thirty-fold change in roundoff error.

Truncation Error. It is typical in numerical mathematics to use
formulas like π = 3.14159 or e = 2.718. These formulas truncate the
actual decimal expansion, causing an error. Truncation is the term
used for reducing the number of digits to the right of the decimal point,
by discarding all digits past a certain point, e.g., 0.123456789 truncated
to 5 digits is 0.12345. Common truncation errors are caused by dropping
higher order terms in a Taylor series, or by approximating a nonlinear
term by its linearization. In general, a truncation error is made whenever
a formula is replaced by an approximate formula, in which case the
formula is wrong even if computed exactly.

4.3 Error in Numerical Methods 231

Landau Symbol. Edmund Landau, a German mathematician, in-
troduced a convenient notation to represent truncation errors. If f and
g are defined near h = 0, then f = O(g) means that |f(h)| ≤ K|g(h)|
as h → 0, for some constant K. The Landau notation f = O(g) is
vocalized as “f equals big owe of g.” The symbol O(hn) therefore stands
for terms or order hn. Taylor series expansions can then be referenced
succinctly, e.g., sinh = h+ O(h3), eh = 1 + h+ O(h2), and so on. Some
simple rules for the Landau symbol:

O(hn) + O(hm) = O(hmin(n,m)), O(hn)O(hm) = O(hn+m).

Finite Blowup of Solutions. The solution y = (1− x)−1 for y′ =
y2, y(0) = 1 exists on 0 ≤ x < 1, but it becomes infinite at x = 1. The
finite value x = 1 causes blowup of the y-value. This event is called
finite blowup. Attempts to solve y′ = y2, y(0) = 1 numerically will fail
near x = 1, and these errors will propagate past x = 1, if the numerical
problem is allowed to be solved over an interval larger than 0 ≤ x < 1.

Unfortunately, finite blowup cannot be detected in advance from smooth-
ness of f(x, y) or the fact that the problem is applied. For example,
logistic population models y′ = y(a − by) typically have solutions with
finite blowup. On the positive side, there are three common conditions
which guarantee no finite blowup:

• A linear equation y′ + p(x)y = q(x) does not exhibit finite blowup
on the domain of continuity of p(x) and q(x).

• An equation y′ = f(x, y) does not exhibit finite blowup if f is
continuous and max |fy(x, y)| <∞.

• An equation y′ = f(x, y) does not exhibit finite blowup if f is con-
tinuous and f satisfies a Lipschitz condition |f(x, y1)− f(x, y2)| ≤
M |y1 − y2| for some constant M > 0 and all x, y1, y2.

Numerical Instability. The equation y′ = y + 1 − x has solution
y = x+cex. Attempts to solve for y(0) = 1 will meet with failure, because
errors will cause the numerical solution to lock onto some solution with
c 6= 0 and small, which causes the numerical solution to grow like ex. In
this case, the instability was caused by the problem itself.

Numerical instability can result even though the solution is physically
stable. An example is y′ = −50(y− sinx) + cosx, y(0) = 0. The general
solution is y = ce−50x + sinx and y(0) = 0 gives c = 0. The negative
exponential term is transient and sinx is the unique periodic steady-
state solution. The solution is insensitive to minor changes in the initial
condition. For popular numerical methods, the value at x = 1 seems to
depend greatly on the step size, as is shown by Table 9.

232 First Order Numerical Methods

Table 9. Cumulative error at x = 1 for Euler, Heun and RK4 methods
applied to y′ = −50(y − sinx) + cosx, y(0) = 0, for various step sizes.

h = 0.1 h = 0.05 h = 0.02 h = 0.01
Euler 40701.23 0.183e7 0.00008 0.00004
Heun 0.328e12 0.430e14 0.005 0.00004
RK4 0.318e20 0.219e18 0.00004 0.000001

The sensitivity to step size is due to the algorithm and not to instability
of the problem.

Stiff Problems. The differential equation y′ = −50(y−sinx)+cosx,
which has solution y = ce−50x+sinx, is called stiff, a technical term de-
fined precisely in advanced numerical analysis references, e.g., [?]. Char-
acteristically, it means that the equation has a transient solution y(x)
with derivative y′(x) tending slowly to zero. For instance, if y(x) has a
term like ce−50x, then the derivative is y′(x) is approximately 50 times
larger (y′/y ≈ −50). Applications with transient solutions of Landau or-
der e−at are stiff when a is large. Stiff problems occupy an active branch
of research in applied numerical analysis. Researchers call a problem stiff
provided certain numerical methods for it are unstable (e.g., inaccurate)
unless the step size is taken to be extremely small.

Cumulative Error Estimates

It is possible to give theoretical but not practical estimates for the cumu-
lative error in the case of Euler’s method, Heun’s method and the RK4
method. Applied literature and computer documentation often contain
references to these facts, typically in the following succinct form.

• Euler’s method has order 1.

• Heun’s method has order 2.

• The Runge-Kutta method (RK4) has order 4.

The exact meaning of these statements is given below in the theorems.
The phrase order n in this context refers to Edmund Landau’s order
notation O(hn). In particular, order 2 means O(h2).

In practical terms, the statements measure the quality and accuracy of
the algorithms themselves, and hence establish an expectation of perfor-
mance from each algorithm. They do not mean that step size h = 0.001
gives three digits of accuracy in the computed answer! The meaning is
that repeated halving of the step size will result in three digits of ac-
curacy, eventually. Most persons half the step size until the first three

4.3 Error in Numerical Methods 233

digits repeat, then they take this to be the optimal step size for three-
digit accuracy. The theorems don’t say that this practise is correct, only
that for some step size it is correct.

Theorem 1 (Euler’s Method Error)
Let the initial value problem y′ = f(x, y), y(x0) = y0 have a solution y(x)
in the region x0 ≤ x ≤ x0 +H, |y− y0| ≤ K and assume that f , fx and fy
are continuous. Then the cumulative error E(x0 + nh) at step n, nh ≤ H,
made by Euler’s method using step size h satisfies E(x0 + nh) ≤ Ch. The
constant C depends only on x0, y0, H, K, f , fx and fy. See [?] and [?].

Theorem 2 (Heun Method Error)
Let the initial value problem y′ = f(x, y), y(x0) = y0 have a solution in
the region x0 ≤ x ≤ x0 + H, |y − y0| ≤ K. Assume f is continuous
with continuous partials to order 3. Then the cumulative error E(x0 + nh)
at step n, nh ≤ H, made by Heun’s method using step size h, satisfies
E(x0 + nh) ≤ Ch2. The constant C depends only on x0, y0, H, K, f and
the partials of f to order 3.

Theorem 3 (RK4 Method Error)
Let the initial value problem y′ = f(x, y), y(x0) = y0 have a solution y(x)
in the region x0 ≤ x ≤ x0 + H, |y − y0| ≤ K. Assume f is continuous
with continuous partials to order 5. Then the cumulative error E(x0 + nh)
at step n, nh ≤ H, made by the RK4 method using step size h, satisfies
E(x0 +nh) ≤ Ch4. The constant C depends only on x0, y0, H, K, f , and
the partials of f to order 5.

The last two results are implied by local truncation error estimates for
Taylor’s method of order n (section 5.3 in Burden-Faires [?]).

Exercises 4.3

Cumulative Error. Make a table of
6 lines which has four columns x, y1,
y, E. Symbols y1 and y are the ap-
proximate and exact solutions while E
is the cumulative error. Find y1 using
Euler’s method in steps h = 0.1.

1. y′ = 2 + y, y(0) = 5. Exact solu-
tion y(x) = −2 + 7ex.

2. y′ = 3 + y, y(0) = 5. Exact solu-
tion y(x) = −3 + 8ex.

3. y′ = e−x + y, y(0) = 4. Exact
solution y(x) = − 1

2e
−x + 9

2e
x.

4. y′ = 3e−2x + y, y(0) = 4. Exact
solution y(x) = −e−2x + 5ex.

Local Error. Make a table of 4 lines
which has four columns x, y1, y, E.
Symbols y1 and y are the approximate
and exact solutions while E is the local
error. Find y1 using Euler’s method
in steps h = 0.1. The general solu-
tion in each exercise is the solution for
y(0) = c.

5. y′ = 2 + y, y(0) = 5. General so-
lution y(x) = −2 + (2 + c)ex.

6. y′ = 3 + y, y(0) = 5. General so-
lution y(x) = −3 + (3 + c)ex.

7. y′ = 2e−x + y, y(0) = 4. General
solution y(x) = −e−x + (1 + c)ex.

234 First Order Numerical Methods

8. y′ = 3e−2x + y, y(0) = 4. General
solution y(x) = −e−2x+(1+c)ex.

Roundoff Error. Compute the round-
off error for y = 5a+ 4b.

9. Assume 3-digit precision. Let a =
0.0001 and b = 0.0003.

10. Assume 3-digit precision. Let a =
0.0002 and b = 0.0001.

11. Assume 5-digit precision. Let a =
0.000007 and b = 0.000003.

12. Assume 5-digit precision. Let a =
0.000005 and b = 0.000001.

Truncation Error. Find the trunca-
tion error.

13. Truncate x = 1.123456789 to 3
digits right of the decimal point.

14. Truncate x = 1.123456789 to 4
digits right of the decimal point.

15. Truncate x = 1.017171717 to 7
digits right of the decimal point.

16. Truncate x = 1.03939393939 to 9
digits right of the decimal point.

Guessing the Step Size. Do a nu-
merical experiment to estimate the
step size needed for 7-digit accuracy of
the solution. Using the given method,
report the step size, which if halved
repeatedly, generates a numerical so-
lution with 7-digit accuracy.

17. y′ = 2 + y, y(0) = 5. Exact so-
lution y(x) = −2 + 7ex. Euler’s
method.

18. y′ = 3 + y, y(0) = 5. Exact so-
lution y(x) = −3 + 8ex. Euler’s
method

19. y′ = e−x + y, y(0) = 4. Exact so-
lution y(x) = − 1

2e
−x + 9

2e
x. Eu-

ler’s method

20. y′ = 3e−2x + y, y(0) = 4. Exact
solution y(x) = −e−2x + 5ex. Eu-
ler’s method.

21. y′ = y/(1 + x), y(0) = 1. Ex-
act solution y(x) = 1 + x. Euler’s
method.

22. y′ = y(x)/(1 + 2x), y(0) = 1. Ex-
act solution y(x) =

√
1 + 2x. Eu-

ler’s method.

23. y′ = 2 + y, y(0) = 5. Exact so-
lution y(x) = −2 + 7ex. Heun’s
method.

24. y′ = 3 + y, y(0) = 5. Exact so-
lution y(x) = −3 + 8ex. Heun’s
method

25. y′ = e−x + y, y(0) = 4. Ex-
act solution y(x) = − 1

2e
−x + 9

2e
x.

Heun’s method

26. y′ = 3e−2x + y, y(0) = 4. Ex-
act solution y(x) = −e−2x + 5ex.
Heun’s method.

27. y′ = y/(1 + x), y(0) = 1. Ex-
act solution y(x) = 1 + x. Heun’s
method.

28. y′ = y(x)/(1 + 2x), y(0) = 1.
Exact solution y(x) =

√
1 + 2x.

Heun’s method.

29. y′ = 2 + y, y(0) = 5. Exact so-
lution y(x) = −2 + 7ex. RK4
method.

30. y′ = 3 + y, y(0) = 5. Exact so-
lution y(x) = −3 + 8ex. RK4
method

31. y′ = e−x + y, y(0) = 4. Exact so-
lution y(x) = − 1

2e
−x + 9

2e
x. RK4

method

32. y′ = 3e−2x + y, y(0) = 4. Exact
solution y(x) = −e−2x+5ex. RK4
method.

33. y′ = y/(1 + x), y(0) = 1. Ex-
act solution y(x) = 1 + x. RK4
method.

34. y′ = y(x)/(1 + 2x), y(0) = 1.
Exact solution y(x) =

√
1 + 2x.

RK4 method.

4.4 Computing π, ln 2 and e 235

4.4 Computing π, ln 2 and e

The approximations π ≈ 3.1415927, ln 2 ≈ 0.69314718, e ≈ 2.7182818
can be obtained by numerical methods applied to the following initial
value problems:

y′ =
4

1 + x2
, y(0) = 0, π = y(1),(1)

y′ =
1

1 + x
, y(0) = 0, ln 2 = y(1),(2)

y′ = y, y(0) = 1, e = y(1).(3)

Equations (1)–(3) define the constants π, ln 2 and e through the corre-
sponding initial value problems.

The third problem (3) requires a numerical method like RK4, while the
other two can be solved using Simpson’s quadrature rule. It is a fact that
RK4 reduces to Simpson’s rule for y′ = F (x), therefore, for simplicity,
RK4 can be used for all three problems. It will be seen that the choice
of the DE-solver algorithm (e.g., RK4) affects computational accuracy.

Computing π =
∫ 1
0 4(1 + x2)−1dx

The easiest method is Simpson’s rule. It can be implemented in virtually
every computing environment. The code below works in popular matlab-
compatible numerical laboratories. It modifies easily to other computing
platforms, such as maple and mathematica. To obtain the answer for
π = 3.1415926535897932385 correct to 12 digits, execute the code on the
right in Table 10, below the definition of f .

Table 10. Numerical integration of
∫ 1

0
4(1 + x2)−1dx.

Simpson’s rule is applied, using matlab-compatible code. About 50 subdivisions
are required.

function ans = simp(x0,x1,n,f)
h=(x1-x0)/n; ans=0;
for i=1:n;
ans1=f(x0)+4*f(x0+h/2)+f(x0+h);
ans=ans+(h/6)*ans1;
x0=x0+h;
end

function y = f(x)
y = 4/(1+x*x);

ans=simp(0,1,50,f)

It is convenient in some laboratories to display answers with printf
or fprintf, in order to show 12 digits. For example, scilab prints
3.1415927 by default, but 3.141592653589800 using printf.

The results checked in maple give π ≈ 3.1415926535897932385, accu-
rate to 20 digits, regardless of the actual maple numerical integration

236 First Order Numerical Methods

algorithm chosen (three were possible). The checks are invoked by
evalf(X,20) where X is replaced by int(4/(1+x*x),x=0..1).

The results for an approximation to π using numerical solvers for dif-
ferential equations varied considerably from one algorithm to another,
although all were accurate to 5 rounded digits. A summary for odepack
routines appears in Table 11, obtained from the scilab interface. A
selection of routines supported by maple appear in Table 12. Default
settings were used with no special attempt to increase accuracy.

The Gear routines refer to those in the 1971 textbook [?]. The Livermore
stiff solver lsode can be found in reference [?]. The Runge-Kutta routine
of order 7-8 called dverk78 appears in the 1991 reference of Enright
[?]. The multistep routines of Adams-Moulton and Adams-Bashforth
are described in standard numerical analysis texts, such as [?]. Taylor
series methods are described in [?]. The Fehlberg variant of RK4 is given
in [?].

Table 11. Differential equation numeric solver results for odepack

routines, applied to the problem y′ = 4/(1 + x2), y(0) = 0.

Exact value of π 3.1415926535897932385 20 digits
Runge-Kutta 4 3.1415926535910 10 digits
Adams-Moulton lsode 3.1415932355842 6 digits
Stiff Solver lsode 3.1415931587318 5 digits
Runge-Kutta-Fehlberg 45 3.1416249508084 4 digits

Table 12. Differential equation numeric solver results for some maple-
supported routines, applied to the problem y′ = 4/(1 + x2), y(0) = 0.

Exact value of π 3.1415926535897932385 20 digits
Classical RK4 3.141592653589790 15 digits
Gear 3.141592653688446 11 digits
Dverk78 3.141592653607044 11 digits
Taylor Series 3.141592654 10 digits
Runge-Kutta-Fehlberg 45 3.141592674191119 8 digits
Multistep Gear 3.141591703761340 7 digits
Lsode stiff solver 3.141591733742521 6 digits

Computing ln 2 =
∫ 1
0 dx/(1 + x)

Like the problem of computing π, the formula for ln 2 arises from the
method of quadrature applied to y′ = 1/(1 + x), y(0) = 0. The solution
is y(x) =

∫ x
0 dt/(1 + t). Application of Simpson’s rule with 150 points

gives ln 2 ≈ 0.693147180563800, which agrees with the exact value ln 2 =
0.69314718055994530942 through 12 digits.

More robust numerical integration algorithms produce the exact answer
for ln 2, within the limitations of machine representation of numbers.

4.4 Computing π, ln 2 and e 237

Differential equation methods, as in the case of computing π, have results
accurate to at least 5 digits, as is shown in Tables 13 and 14. Lower
order methods such as classical Euler will produce results accurate to
three digits or less.

Table 13. Differential equation numeric solver results for odepack

routines, applied to the problem y′ = 1/(1 + x), y(0) = 0.

Exact value of ln 2 0.69314718055994530942 20 digits
Adams-Moulton lsode 0.69314720834637 7 digits
Stiff Solver lsode 0.69314702723982 6 digits
Runge-Kutta 4 0.69314718056011 11 digits
Runge-Kutta-Fehlberg 45 0.69314973055488 5 digits

Table 14. Differential equation numeric solver results for maple-
supported routines, applied to the problem y′ = 1/(1 + x), y(0) = 0.

Exact value of ln 2 0.69314718055994530942 20 digits
Classical Euler 0.6943987430550621 2 digits
Classical Heun 0.6931487430550620 5 digits
Classical RK4 0.6931471805611659 11 digits
Gear 0.6931471805646605 11 digits
Gear Poly-extr 0.6931471805664855 11 digits
Dverk78 0.6931471805696615 11 digits
Adams-Bashforth 0.6931471793736268 8 digits
Adams-Bashforth-Moulton 0.6931471806484283 10 digits
Taylor Series 0.6931471806 10 digits
Runge-Kutta-Fehlberg 45 0.6931481489496502 5 digits
Lsode stiff solver 0.6931470754312113 7 digits
Rosenbrock stiff solver 0.6931473787603164 6 digits

Computing e from y′ = y, y(0) = 1

The initial attack on the problem uses classical RK4 with f(x, y) = y.
After 300 steps, classical RK4 finds the correct answer for e to 12 digits:
e ≈ 2.71828182846. In Table 15, the details appear of how to accomplish
the calculation using matlab-compatible code. Corresponding maple
code appears in Table 16 and in Table 17. Additional code for octave
and scilab appear in Tables 18 and 19.

238 First Order Numerical Methods

Table 15. Numerical solution of y′ = y, y(0) = 1.
Classical RK4 with 300 subdivisions using matlab-compatible code.

function [x,y]=rk4(x0,y0,x1,n,f)
x=x0;y=y0;h=(x1-x0)/n;
for i=1:n;
k1=h*f(x,y);
k2=h*f(x+h/2,y+k1/2);
k3=h*f(x+h/2,y+k2/2);
k4=h*f(x+h,y+k3);
y=y+(k1+2*k2+2*k3+k4)/6;
x=x+h;
end

function yp = ff(x,y)
yp= y;

[x,y]=rk4(0,1,1,300,ff)

Table 16. Numerical solution of y′ = y, y(0) = 1 by maple internal
classical RK4 code.

de:=diff(y(x),x)=y(x):
ic:=y(0)=1:
Y:=dsolve({de,ic},y(x),

type=numeric,method=classical[rk4]):
Y(1);

Table 17. Numerical solution of y′ = y, y(0) = 1 by classical RK4
with 300 subdivisions using maple-compatible code.

rk4 := proc(x0,y0,x1,n,f)
local x,y,k1,k2,k3,k4,h,i:
x=x0: y=y0: h=(x1-x0)/n:
for i from 1 to n do
k1:=h*f(x,y):k2:=h*f(x+h/2,y+k1/2):
k3:=h*f(x+h/2,y+k2/2):k4:=h*f(x+h,y+k3):
y:=evalf(y+(k1+2*k2+2*k3+k4)/6,Digits+4):
x:=x+h:

od:
RETURN(y):
end:

f:=(x,y)->y;
rk4(0,1,1,300,f);

A matlab m-file "rk4.m" is loaded into scilab-4.0 by getf("rk4.m") .

Most scilab code is loaded by using default file extension .sci , e.g.,
rk4scilab.sci is a scilab file name. This code must obey scilab

rules. An example appears below in Table 18.

4.4 Computing π, ln 2 and e 239

Table 18. Numerical solution of y′ = y, y(0) = 1 by classical RK4
with 300 subdivisions, using scilab-4.0 code.

function
[x,y]=rk4sci(x0,y0,x1,n,f)
x=x0,y=y0,h=(x1-x0)/n
for i=1:n
k1=h*f(x,y)
k2=h*f(x+h/2,y+k1/2)
k3=h*f(x+h/2,y+k2/2)
k4=h*f(x+h,y+k3)
y=y+(k1+2*k2+2*k3+k4)/6
x=x+h
end

endfunction

function yp = ff(x,y)
yp= y

endfunction

[x,y]=rk4sci(0,1,1,300,ff)

The popularity of octave as a free alternative to matlab has kept it alive
for a number of years. Writing code for octave is similar to matlab and
scilab, however readers are advised to look at sample code supplied
with octave before trying complicated projects. In Table 19 can be
seen some essential agreements and differences between the languages.
Versions of scilab after 4.0 have a matlab to scilab code translator.

Table 19. Numerical solution of y′ = y, y(0) = 1 by classical RK4
with 300 subdivisions using octave-2.1.

function
[x,y]=rk4oct(x0,y0,x1,n,f)
x=x0;y=y0;h=(x1-x0)/n;
for i=1:n
k1=h*feval(f,x,y);
k2=h*feval(f,x+h/2,y+k1/2);
k3=h*feval(f,x+h/2,y+k2/2);
k4=h*feval(f,x+h,y+k3);
y=y+(k1+2*k2+2*k3+k4)/6;
x=x+h;
endfor

endfunction

function yp = ff(x,y)
yp= y;
end

[x,y]=rk4oct(0,1,1,300,’ff’)

Exercises 4.4

Computing π. Compute π = y(1)
from the initial value problem y′ =
4/(1 + x2), y(0) = 0, using the given
method.

1. Use the Rectangular integration
rule. Determine the number of
steps for 5-digit precision.

2. Use the Rectangular integration
rule. Determine the number of
steps for 8-digit precision.

3. Use the Trapezoidal integration
rule. Determine the number of
steps for 5-digit precision.

4. Use the Trapezoidal integration

240 First Order Numerical Methods

rule. Determine the number of
steps for 8-digit precision.

5. Use classical RK4. Determine the
number of steps for 5-digit preci-
sion.

6. Use classical RK4. Determine the
number of steps for 10-digit preci-
sion.

7. Use computer algebra system as-
sist for RK4. Report the number
of digits of precision using system
defaults.

8. Use numerical workbench assist
for RK4. Report the number of
digits of precision using system
defaults.

Computing ln(2). Compute ln(2) =
y(1) from the initial value problem
y′ = 1/(1 + x), y(0) = 0, using the
given method.

9. Use the Rectangular integration
rule. Determine the number of
steps for 5-digit precision.

10. Use the Rectangular integration
rule. Determine the number of
steps for 8-digit precision.

11. Use the Trapezoidal integration
rule. Determine the number of
steps for 5-digit precision.

12. Use the Trapezoidal integration
rule. Determine the number of
steps for 8-digit precision.

13. Use classical RK4. Determine the
number of steps for 5-digit preci-
sion.

14. Use classical RK4. Determine the
number of steps for 10-digit preci-
sion.

15. Use computer algebra system as-
sist for RK4. Report the number
of digits of precision using system
defaults.

16. Use numerical workbench assist
for RK4. Report the number of
digits of precision using system
defaults.

Computing e. Compute e = y(1)
from the initial value problem y′ = y,
y(0) = 1, using the given computer as-
sist. Report the number of digits of
precision using system defaults.

17. Improved Euler method, also
known as Heun’s method.

18. RK4 method.

19. RKF45 method.

20. Adams-Moulton method.

Stiff Differential Equation. The
flame propagation equation y′ =
y2(1−y) is known to be stiff for initial
conditions y(0) = y0 with y0 > 0 and
small. Use classical RK4 and then a
stiff solver to compute and plot the so-
lution y(t) in each case. Expect 3000
steps with RK4 versus 100 with a stiff
solver.

The exact solution of this equation can
be expressed in terms of the Lambert
function w(u), defined by u = w(x)
if and only if ueu = x. For example,
y(0) = 0.01 gives

y(t) =
1

w (99e99−t) + 1
.

See R.M. Corless, G.H. Gonnet,
D.E.G. Hare, D.J. Jeffrey, and D.E.
Knuth. “On The Lambert W Func-
tion,” Advances in Computational
Mathematics 5 (1996): 329-359.

21. y(0) = 0.01

22. y(0) = 0.005

23. y(0) = 0.001

24. y(0) = 0.0001

4.5 Earth to the Moon 241

4.5 Earth to the Moon

A projectile launched from the surface of the earth is attracted both by
the earth and the moon. The altitude r(t) of the projectile above the
earth is known to satisfy the initial value problem (see Technical Details
page 244)

r′′(t) = − Gm1

(R1 + r(t))2
+

Gm2

(R2 −R1 − r(t))2
,

r(0) = 0, r′(0) = v0.

(1)

The unknown initial velocity v0 of the projectile is given in meters per
second. The constants in (1) are determined as follows.

G = 6.6726× 10−11 N-m2/kg2 Universal gravitation constant,
m1 = 5.975× 1024 kilograms Mass of the earth,
m2 = 7.36× 1022 kilograms Mass of the moon,
R1 = 6, 378, 000 meters Radius of the earth,
R2 = 384, 400, 000 meters Distance from the earth’s center

to the moon’s center.

Jules Verne. In his 1865 novel From the Earth to the Moon, Jules
Verne asked what initial velocity must be given to the projectile in order
to reach the moon. The question in terms of equation (1) becomes:

What minimal value of v0 causes the projectile to have zero
net acceleration at some point between the earth and the
moon?

The projectile only has to travel a distance R equal to the surface-to-
surface distance between the earth and the moon. The altitude r(t)
of the projectile must satisfy 0 ≤ r ≤ R. Given v0 for which the net
acceleration is zero, r′′(t) = 0 in (1), then the projectile has reached a
critical altitude r∗, where gravitational effects of the moon take over and
the projectile will fall to the surface of the moon.

Let r′′(t) = 0 in (1) and substitute r∗ for r(t) in the resulting equation.
Then

− Gm1

(R1 + r∗)2
+

Gm2

(R2 −R1 − r∗)2
= 0,

r∗ =
R2

1 +
√
m2/m1

−R1 ≈ 339, 260, 779 meters.
(2)

Using energy methods (see Technical details, page 244), it is possible to
calculate exactly the minimal earth-to-moon velocity v∗0 required for the
projectile to just reach critical altitude r∗:

v∗0 ≈ 11067.19091 meters per second.(3)

242 First Order Numerical Methods

A Numerical Experiment. The value v∗0 ≈ 11067.19091 in (3)
will be verified experimentally. As part of this experiment, the flight
time is estimated. Such a numerical experiment must adjust the initial
velocity v0 in initial value problem (1) so that r(t) increases from 0 to
R. Graphical analysis of a solution r(t) for low velocities v0 gives insight
into the problem; see Figure 7.

r

t

0

51530

206

Figure 7. Jules Verne Problem.
The solution r(t) of (1) for v0 = 1000.
The projectile rises to a maximum
height of about 51, 530 meters, then it
falls back to earth. The trip time is
206 seconds.

The numerical experiment solves (1) using lsode3, then the solution is
graphed, to see if the projectile falls back to earth (as in Figure 7) or if it
reaches an altitude near r∗ and then falls to the moon. Suitable starting
values for the initial velocity v0 and the trip time T are v0 = 1000 and
T = 210 (see Figure 7), in the case when the projectile falls back to
earth. The projectile travels to the moon when the r-axis of the graphic
has maximum greater than r∗ ≈ 339, 260, 779 meters. The logic is that
this condition causes the gravitation effects of the moon to be strong
enough to force the projectile to fall to the moon.

In Table 20 appears maple initialization code. In Table 21, group 2 is
executed a number of times, to refine estimates for the initial velocity
v0 and the trip time T . A summary of some estimates appear in Table
22. The graphics produced along the way resemble Figure 7 or Figure
8. A successful trip to the moon is represented in Figure 8, which uses
v0 = 11068 meters per second and T = 515250 seconds.

0 515250

t

r
3.70× 108

Figure 8. Experimental trip to the moon.
The initial velocity is v0 = 24, 764 miles per hour and the trip time is 143 hours.
See Table 22 for details about how these values were obtained.

3The acronym lsode stands for the Livermore Laboratory numerical stiff solver
for ordinary differential equations. The computer algebra system maple documents
and implements this algorithm. In maple versions after 9, replace method=lsode by
stiff=true to improve speed.

4.5 Earth to the Moon 243

Table 20. Initialization code in maple for the numerical experiment.
Group 1 defines seven constants G, m1, m2, R1, R2, R3, R and computes values
r∗ ≈ 339, 260, 779 and v∗0 ≈ 11067.19091.

Group 1: Constants plus rstar and v0star
G:=6.6726e-11: m1:=5.975e24: m2:=7.36e22:
R1:=6.378e6: R2:=3.84e8: R3:=1.74e6:
R:=R2-R1-R3:
ans:=[solve(-G*m1/(r+R1)^2 + G*m2/(R2-R1-r)^2=0,r)]:
rstar:=ans[1];
FF:=r->G*m1/(R1+r)+G*m2/(R2-R1-r):
v0star:=sqrt(2*(FF(0)-FF(rstar)));

Table 21. Iteration code in maple for the numerical experiment.
Group 2 plots a graphic for given v0 and T . A successful trip to the moon
must use velocity v0 > v∗0 ≈ 11067.19091. The relation max0≤t≤T Y (t) > r∗ ≈
339, 260, 779 must be valid. Finally, Y (T) ≥ R must hold.

Group 2: Iteration code
v0:=1000: # v0<v0star. Projectile falls to earth.
de:=diff(r(t),t,t)=-G*m1/(r(t)+R1)^2+G*m2/(R2-R1-r(t))^2:
ic:=r(0)=0,D(r)(0)=v0:
p:=dsolve({de,ic},r(t),
type=numeric,method=lsode,startinit=true);
Y:=t->rhs(p(t)[2]):
T:=200: # Guess the trip time T
plot(’Y(t)’,t=0..T);
Plot done. Change v0, T and re-execute group 2.

Table 22. Experimental results with the lsode solver to obtain esti-
mates for the initial velocity v0 and the trip time T .

v0 T Results
11000 38500 r(T/2) = 1.872× 108, r(T) = 0
12000 80000 r(T) > r∗ ≈ 3.39× 108

11125 200000 r(T) > r∗

11060 780000 r(T/2) = 2.918× 108, r(T) = 0
11070 377500 r(T) > r∗

11068 515250 r(T) ≈ R

Exact trip time. The time T for a trip with velocity v0 = 11068
can be computed once an approximate value for the trip time is known.
For instance, if T = 515250 gives a successful plot, but T = 515150
does not, then the exact value of T is between 515250 and 515150. The
computer algebra system can be used to determine the more precise value

244 First Order Numerical Methods

T = 515206.1757, as follows.
Group 2
v0:=11068: # Projectile reaches the moon.
de:=diff(r(t),t,t)=-G*m1/(r(t)+R1)^2
+G*m2/(R2-R1-r(t))^2:
ic:=r(0)=0,D(r)(0)=v0:
p:=dsolve({de,ic},r(t),
type=numeric,method=lsode,startinit=true);
Y:=t->rhs(p(t)[2]):
fsolve(’Y(t)’=R,t,515150..515250);
T==515206.1757

Technical details for (1): To derive (1), it suffices to write down a compe-
tition between the Newton’s second law force relation mr′′(t) and the sum of
two forces due to gravitational attraction for the earth and the moon. Here, m
stands for the mass of the projectile.

Gravitational force for the earth. This force, by Newton’s universal grav-
itation law, has magnitude

F1 =
Gm1m

R2
3

where m1 is the mass of the earth, G is the universal gravitation constant and
R3 is the distance from the projectile to the center of the earth: R3 = R1+r(t).

Gravitational force for the moon. Similarly, this force has magnitude

F2 =
Gm2m

R2
4

where m2 is the mass of the moon and R4 is the distance from the projectile
to the center of the moon: R4 = R2 −R1 − r(t).
Competition between forces. The force equation is

mr′′(t) = −F1 + F2

due to the directions of the force vectors. Simplifying the relations and can-
celling m gives equation (1).

Technical details for (3): To justify the value for v0, multiply equation (1)
by r′ and integrate the new equation from t = 0 to t = t0 to get

1
2

(r′(t0))2 = F (r(t0))− F (0) +
1
2
v2
0 , where

F (r) =
Gm1

R1 + r
+

Gm2

R2 −R1 − r
.

(4)

The expression F (r) is minimized when F ′(r) = 0 or else at r = 0 or r = R.
The right side of (1) is F ′(r), hence F (r) has unique critical point r = r∗.
Compute F (0) = 62522859.35, F (r∗) = 1281502.032 and F (R) = 3865408.696.
Then the minimum of F (r) is at r = r∗ and F (r∗) ≤ F (r(t0)).

The left side of (4) is nonnegative, therefore also the right side is nonnegative,
giving 1

2 v
2
0 ≥ F (0) − F (r(t0)). If the projectile ever reaches altitude r∗, then

r(t0) = r∗ is allowed and v0 ≥
√

2F (0)− 2F (r∗) ≈ 11067.19091. Restated,

4.5 Earth to the Moon 245

v0 < 11067.19091 implies the projectile never reaches altitude r∗, hence it falls
back to earth. On the other hand, if v0 > 11067.19092, then by (4) and F (r∗) ≤
F (r) it follows that r′(t) > 0 and therefore the projectile cannot return to earth.
That is, r(t) = 0 for some t > 0 can’t happen.

In summary, the least launch velocity v∗0 which allows r(t) = r∗ for some t > 0
is given by the formulas

v∗0 =
√

2F (0)− 2F (r∗), F (r) =
Gm1

R1 + r
+

Gm2

R2 −R1 − r
.

This completes the proof of equation (3).

Exercises 4.5

Critical Altitude r∗. The symbol r∗

is the altitude r(t) at which gravita-
tional effects of the moon take over,
causing the projectile to fall to the
moon.
1. Justify from the differential equa-

tion that r′′(t) = 0 at r∗ = r(t)
implies the first relation in (2):

Gm2

(R2 − R1 − r∗)2
−

Gm1

(R1 + r∗)2
= 0.

2. Solve the relation of the previous
exercise for r∗, symbolically, to
obtain the second equation of (2):

r∗ =
R2

1 +
√
m2/m1

−R1.

3. Use the previous exercise and val-
ues for the constants R1, R2, m1,
m2 to obtain the approximation

r∗ = 339, 260, 779 meters.

4. Determine the effect on r∗ for a
one percent error in measurement
m2. Replace m2 by 0.99m2 and
1.01m2 in the formula for r∗ and
report the two estimated critical
altitudes.

Escape Velocity v∗0 . The symbol
v∗0 is the velocity r′(0) such that
limt→∞ r(t) = ∞, but smaller launch
velocities will cause the projectile to
fall back to the earth. Throughout, de-
fine

F (r) =
Gm1

R1 + r
+

Gm2

R2 −R1 − r
.

5. Let v0 = r′(0), r∗ = r(t0). Derive
the formula

1
2

(r′(t0))2 = F (r∗)− F (0) +
1
2
v2
0

which appears in the proof details.

6. Verify using the previous exercise
that r′(t0) = 0 implies

v∗0 =
√

2(F (0)− F (r∗)).

7. Verify by hand calculation that
v∗0 ≈ 11067.19091 meters per sec-
ond.

8. Argue by mathematical proof that
F (r) is not minimized at the end-
points of the interval 0 ≤ r ≤ R.

Numerical Experiments. Assume
values given in the text for physical
constants. Perform the given experi-
ment, using numerical software, on ini-
tial value problem (1), page 241. The
cases when v0 > v∗0 escape the earth,
while the others fall back to earth.

9. RK4 solver, v0 = 11068, T =
515000. Plot the solution on 0 ≤
t ≤ T .

10. Stiff solver, v0 = 11068, T =
515000. Plot the solution on 0 ≤
t ≤ T .

11. RK4 solver, v0 = 11067.2, T =
800000. Plot the solution on 0 ≤
t ≤ T .

246 First Order Numerical Methods

12. Stiff solver, v0 = 11067.2, T =
800000. Plot the solution on 0 ≤
t ≤ T .

13. RK4 solver, v0 = 11067, T =
1000000. Plot the solution on
0 ≤ t ≤ T .

14. Stiff solver, v0 = 11067, T =
1000000. Plot the solution on
0 ≤ t ≤ T .

15. RK4 solver, v0 = 11066, T =
800000. Plot the solution on 0 ≤
t ≤ T .

16. Stiff solver, v0 = 11066, T =
800000. Plot the solution on 0 ≤
t ≤ T .

17. RK4 solver, v0 = 11065. Find
a suitable value T which shows

that the projectile falls back to
earth, then plot the solution on
0 ≤ t ≤ T .

18. Stiff solver, v0 = 11065. Find
a suitable value T which shows
that the projectile falls back to
earth, then plot the solution on
0 ≤ t ≤ T .

19. RK4 solver, v0 = 11070. Find a
suitable value T which shows that
the projectile falls to the moon,
then plot the solution on 0 ≤ t ≤
T .

20. Stiff solver, v0 = 11070. Find a
suitable value T which shows that
the projectile falls to the moon,
then plot the solution on 0 ≤ t ≤
T .

4.6 Skydiving 247

4.6 Skydiving

A skydiver of 160 pounds jumps from a hovercraft at 15, 000 feet. The
fall is mostly vertical from zero initial velocity, but there are significant
effects from air resistance until the parachute opens at 5, 000 feet. The
resistance effects are determined by the skydiver’s clothing and body
shape.

Velocity Model. Assume the skydiver’s air resistance is modeled by
a force equation

F (v) = av + bv2 + cv3.

The constants a, b, c are given by the formulas

a = 0.009, b = 0.0008, c = 0.0001.

In particular, the force F (v) is positive for v positive. According to
Newton’s second law, the velocity v(t) of the skydiver satisfies mv′(t) =
mg − F (v). We assume mg = 160 pounds and g ≈ 32 feet per second
per second. The velocity model is

v′(t) = 32− 32
160

(
0.009v(t) + 0.0008v2(t) + 0.0001v3(t)

)
, v(0) = 0.

Distance Model. The distance x(t) traveled by the skydiver, mea-
sured from the hovercraft, is given by the distance model

x′(t) = v(t), x(0) = 0.

The velocity is expected to be positive throughout the flight. Because
the parachute opens at 5000 feet, at which time the velocity model must
be replaced the open parachute model (not discussed here), the distance
x(t) increases with time from 0 feet to its limiting value of 10000 feet.
Values of x(t) from 10000 to 15000 feet make sense only for the open
parachute model.

Terminal Velocity. The terminal velocity is an equilibrium solu-
tion v(t) = v∞ of the velocity model, therefore constant v∞ satisfies

32− 32
160

(
0.009v∞ + 0.0008v2

∞ + 0.0001v3
∞

)
= 0.

A numerical solver is applied to find the value v∞ = 114.1 feet per
second, which is about 77.8 miles per hour. For the solver, we define
f(v) = 32− F (v) and solve f(v) = 0 for v. Some maple details:

f:=v->32 - (32/160)*(0.009*v+0.0008*v^2+0.0001*v^3);
fsolve(f(v)=0,v); # 114.1032777 ft/sec
60*60*fsolve(f(v)=0,v)/5280; # 77.79768934 mi/hr

248 First Order Numerical Methods

A Numerical Experiment. The Runge-Kutta method will be ap-
plied to produce a table which contains the elapsed time t, the skydiver
velocity v(t) and the distance traveled x(t), up until the distance reaches
nearly 10000 feet, whereupon the parachute opens.

The objective here is to illustrate practical methods of table production
in a computer algebra system or numerical laboratory. It is efficient in
these computational systems to phrase the problem as a system of two
differential equations with two initial conditions.

System Conversion. The velocity substitution v(t) = x′(t) used in the
velocity model gives us two differential equations in the unknowns x(t),
v(t):

x′(t) = v(t), v′(t) = g − 1
m
F (v(t)).

Define f(v) = g − (1/m)F (v). The path we follow is to execute the
maple code below, which produces the table that follows using the default
Runge-Kutta-Fehlberg algorithm.

f:=unapply(32 - (32/160)*(0.009*v+0.0008*v^2+0.0001*v^3),v);
de1:=diff(x(t),t)=v(t); de2:=diff(v(t),t)=f(v(t));
ic:=x(0)=0,v(0)=0;opts:=numeric,output=listprocedure:
p:=dsolve({de1,de2,ic},[x(t),v(t)],opts);
X:=eval(x(t),p); V:=eval(v(t),p);
fmt:="%10.2f %10.2f %10.2f\n";
seq(printf(fmt,5*t,X(5*t),V(5*t)),t=0..18);

t x(t) v(t) t x(t) v(t)
5.00 331.26 106.84 50.00 5456.76 114.10

10.00 892.79 113.97 55.00 6027.28 114.10
15.00 1463.15 114.10 60.00 6597.80 114.10
20.00 2033.67 114.10 65.00 7168.31 114.10
25.00 2604.18 114.10 70.00 7738.83 114.10
30.00 3174.70 114.10 75.00 8309.35 114.10
35.00 3745.21 114.10 80.00 8879.86 114.10
40.00 4315.73 114.10 85.00 9450.38 114.10
45.00 4886.25 114.10 90.00 10020.90 114.10

The table says that the flight time to parachute open at 10,000 feet is
about 90 seconds and the terminal velocity 114.10 feet/sec is reached in
about 15 seconds.

More accurate values for the flight time 89.82 to 10,000 feet and time
14.47 to terminal velocity can be determined as follows.

fsolve(X(t)=10000,t,80..95);
fsolve(V(t)=114.10,t,2..20);

4.6 Skydiving 249

Alternate Method. Another way produce the table is to solve the
velocity model numerically, then determine x(t) =

∫ t
0 v(r)dr by numerical

integration. Due to accuracy considerations, a variant of Simpson’s rule
is used, called the Newton-cotes rule. The maple implementation of
this idea follows.

The first method of conversion into two differential equations is preferred,
even though the alternate method reproduces the table using only the
textbook material presented in this chapter.

f:=unapply(32 - (32/160)*(0.009*v+0.0008*v^2+0.0001*v^3),v);
de:=diff(v(t),t)=f(v(t)); ic:=v(0)=0;
q:=dsolve({de,ic},v(t),numeric);
V:=t->rhs(q(t)[2]);
X:=u->evalf(Int(V,0..u,continuous,_NCrule));
fmt:="%10.2f %10.2f %10.2f\n";
seq(printf(fmt,5*t,X(5*t),V(5*t)),t=0..18);

Ejected Baggage. Much of what has been done here applies as well
to an ejected parcel, instead of a skydiver. What changes is the force
equation F (v), which depends upon the parcel exterior and shape. The
distance model remains the same, but the restraint 0 ≤ x ≤ 10000 no
longer applies, since no parachute opens. We expect the parcel to reach
terminal velocity in 5 to 10 seconds and hit the ground at that speed.

Variable Mass. The mass of a skydiver can be time-varying. For
instance, the diver lets water leak from a reservoir. This kind of problem
assumes mass m(t), position x(t) and velocity v(t) for the diver. Then
Newton’s second law gives a position-velocity model

x′(t) = v(t),

(m(t)v(t))′ = G(t, x(t), v(t)).

The problem is similar to rocket propulsion, in which expended fuel
decreases the in-flight mass of the rocket. Simplifying assumptions make
it possible to present formulas for m(t) and G(t, x, v), which can be used
by the differential equation solver.

Exercises 4.6

Terminal Velocity. Assume force
F (v) = av + bv2 + cv3 and g = 32,
m = 160/g. Using computer assist,
find the terminal velocity v∞ from the

velocity model

v′ = g − 1
m
F (v), v(0) = 0.(1)

1. a = 0, b = 0 and c = 0.0002.

2. a = 0, b = 0 and c = 0.00015.

250 First Order Numerical Methods

3. a = 0, b = 0.0007 and c =
0.00009.

4. a = 0, b = 0.0007 and c =
0.000095.

5. a = 0.009, b = 0.0008 and c =
0.00015.

6. a = 0.009, b = 0.00075 and c =
0.00015.

7. a = 0.009, b = 0.0007 and c =
0.00009.

8. a = 0.009, b = 0.00077 and c =
0.00009.

9. a = 0.009, b = 0.0007 and c = 0.

10. a = 0.009, b = 0.00077 and c = 0.

Numerical Experiment. Assume the
skydiver problem (1) with g = 32 and
constants m, a, b, c supplied below.
Using computer assist, apply a numer-
ical method to produce a table for the
elapsed time t, the velocity v(t) and
the distance x(t). The table must end
at x(t) ≈ 10000 feet, which determines
the flight time.

11. m = 160/g, a = 0, b = 0 and
c = 0.0002.

12. m = 160/g, a = 0, b = 0 and
c = 0.00015.

13. m = 130/g, a = 0, b = 0.0007 and
c = 0.00009.

14. m = 130/g, a = 0, b = 0.0007 and
c = 0.000095.

15. m = 180/g, a = 0.009, b = 0.0008
and c = 0.00015.

16. m = 180/g, a = 0.009, b =
0.00075 and c = 0.00015.

17. m = 170/g, a = 0.009, b = 0.0007
and c = 0.00009.

18. m = 170/g, a = 0.009, b =
0.00077 and c = 0.00009.

19. m = 200/g, a = 0.009, b = 0.0007
and c = 0.

20. m = 200/g, a = 0.009, b =
0.00077 and c = 0.

Flight Time. Assume the skydiver
problem (1) with g = 32 and constants
m, a, b, c supplied below. Using com-
puter assist, apply a numerical method
to find accurate values for the flight
time to 10,000 feet and the time re-
quired to reach terminal velocity.

21. mg = 160, a = 0.0095, b = 0.0007
and c = 0.000092.

22. mg = 160, a = 0.0097, b =
0.00075 and c = 0.000095.

23. mg = 240, a = 0.0092, b = 0.0007
and c = 0.

24. mg = 240, a = 0.0095, b =
0.00075 and c = 0.

Ejected Baggage. Baggage of 45
pounds is dropped from a hovercraft at
15, 000 feet. The fall is mostly vertical
from zero initial velocity, but there are
significant effects from air resistance.
The resistance effects are determined
by the baggage shape and surface con-
struction. Assume air resistance force
F (v) = av + bv2 + cv3, g = 32 and
mg = 45. Using computer assist, find
accurate values for the flight time to
the ground and the terminal velocity.
Estimate the time required to reach
99.95% of terminal velocity.

25. a = 0.0095, b = 0.0007, c =
0.00009

26. a = 0.0097, b = 0.00075, c =
0.00009

27. a = 0.0099, b = 0.0007, c =
0.00009

28. a = 0.0099, b = 0.00075, c =
0.00009

4.7 Lunar Lander 251

4.7 Lunar Lander

A lunar lander goes through free fall to the surface of the moon, its
descent controlled by retrorockets that provide a constant deceleration
to counter the effect of the moon’s gravitational field.

The retrorocket control is supposed to produce a soft touchdown,
which means that the velocity v(t) of the lander is zero when the lander
touches the moon’s surface. To be determined:

H = height above the moon’s surface for retrorocket activation,

T = flight time from retrorocket activation to soft touchdown.

Investigated here are two models for the lunar lander problem. In both
cases, it is assumed that the lander has mass m and falls in the direction
of the moon’s gravity vector. The initial speed of the lander is assumed
to be v0. The retrorockets supply a constant thrust deceleration g1.
Either the fps or mks unit system will be used. Expended fuel ejected
from the lander during thrust will be ignored, keeping the lander mass
constantly m.

The distance x(t) traveled by the lander t time units after retrorocket
activation is given by

x(t) =
∫ t

0
v(r)dr, 0 ≤ t ≤ T.

Therefore, H and T are related by the formulas

v(T) = 0, x(T) = H.

Constant Gravitational Field. Let g0 denote the constant accel-
eration due to the moon’s gravitational field. Assume given initial ve-
locity v0 and the retrorocket thrust deceleration g1. Define A = g1 − g0,
the effective thrust. Set the origin of coordinates at the center of mass
of the lunar lander. Let vector ~ı have tail at the origin and direction
towards the center of the moon. The force on the lander is mv′(t)~ı by
Newton’s second law. The forces mg0~ı and −mg1~ı add to −mA~ı. Force
competition mv′(t)~ı = −mA~ı gives the velocity model

mv′(t) = −mA, v(0) = v0.

This quadrature-type equation is solved routinely to give

v(t) = −At+ v0, x(t) = −At
2

2
+ v0t.

The equation v(T) = 0 gives T = v0/A and H = x(T) = v2
0/(2A).

252 First Order Numerical Methods

Numerical illustration. Let v0 = 1200 miles per hour and A = 30000
miles per hour per hour. We compute values T = 1/25 hours = 2.4
minutes and H = x(T) = 24 miles. A maple implementation appears
below.

v0:=1200; A:=30000;
X:=t->-A*t^2/2+v0*t;
T:=(v0/A): (T*60.0).’min’,X(T).’miles’;
A1:=A*2.54*12*5280/100/3600/3600; # mks units
v1:=v0*12*2.54*5280/100/3600; # mks units
evalf(convert(X(T),units,miles,meters));

The constant field model predicts that the retrorockets should be turned
on 24 miles above the moon’s surface with soft landing descent time
of 2.4 minutes. It turns out that a different model predicts that 24
miles is too high, but only by a small amount. We investigate now this
alternative model, based upon replacing the constant gravitational field
by a variable field.

Variable Gravitational Field. The system of units will be the
mks system. Assume the lunar lander is located at position P above the
moon’s surface. Define symbols:

m = mass of the lander in kilograms,

M = 7.35× 1022 kilograms is the mass of the moon,

R = 1.74× 106 meters is the mean radius of the moon,

G = 6.6726× 10−11 is the universal gravitation constant, in mks units,

H = height in meters of position P above the moon’s surface,

v0 = lander velocity at P in meters per second,

g0 = GM/R2 = constant acceleration due to the moon’s gravity in me-
ters per second per second,

g1 = constant retrorocket thrust deceleration in meters per second per
second,

A = g1 − g0 = effective retrorocket thrust deceleration in meters per
second per second, constant field model,

t = time in seconds,

x(t) = distance in meters from the lander to position P ,

v(t) = x′(t) = velocity of the lander in meters per second.

4.7 Lunar Lander 253

The project is to find the height H above the moon’s surface and the
descent time T for a soft landing, using fixed retrorockets at time t = 0.

The origin of coordinates will be P and~ı is directed from the lander to the
moon. Then x(t)~ı is the lander position at time t. The initial conditions
are x(0) = 0, v(0) = v0. Let g0(t) denote the variable acceleration of
the lander due to the moon’s gravitational field. Newton’s universal
gravitation law applied to point masses representing the lander and the
moon gives the expression

Force = mg0(t)~ı =
GmM

(R+H − x(t))2
~ı.

The force on the lander is mx′′(t)~ı by Newton’s second law. The force is
also mg0(t)~ı −mg1~ı. Force competition gives the second order distance
model

mx′′(t) = −mg1 +
mMG

(R+H − x(t))2
, x(0) = 0, x′(0) = v0.

The technique from the Jules Verne problem applies: multiply the dif-
ferential equation by x′(t) and integrate from t = 0 to the soft landing
time t = T . The result:

(x′(t))2

2

∣∣∣∣∣
t=T

t=0

= −g1(x(T)− x(0)) +
GM

R+H − x(t)

∣∣∣∣t=T
t=0

.

Using the relations x(0) = 0, x′(0) = v0, x′(T) = 0 and x(T) = H gives
a simplified implicit equation for H:

−v
2
0

2
= −g1H +

GM

R
− GM

R+H
.

Numerical illustration. Use v0 = 536.448, g1 = 5.3452174 to mimic
the constant field example of initial velocity 1200 miles per hour and
effective retrorocket thrust 30000 miles per hour per hour. A soft landing
is possible from height H = 23.7775 miles with a descent time of T =
2.385 minutes. These results compare well with the constant field model,
which had results of H = 24 miles and T = 2.4 minutes. Some maple
details follow.

M:=7.35* 10^(22);R:=1.74* 10^6;G:=6.6726* 10^(-11);
v0_CFM:=1200: A_CFM:=30000: # Constant field model values
cf:=1*5280*12*2.54/100/3600: # miles/hour to meters/second
v0:=v0_CFM*cf; g0:=G*M/R^2: g1:=A_CFM*cf/3600+g0;
eq:= -(v0^2/2) + g1*H + G*M/(R+H) - G*M/R=0:
HH:=[solve(eq,H)][1]; # HH := 38266 meters
de:=diff(x(t),t,t) = -g1 + M*G/(R+HH-x(t))^2;

254 First Order Numerical Methods

ic:= x(0)=0, D(x)(0)=v0;
with(DEtools):
DEplot(de,x(t),t=0..290,[[ic]]);
p:=dsolve({de,ic},x(t),numeric):
X:=t->evalf(rhs(p(t)[2])):
V:=t-> evalf(rhs(p(t)[3])):
TT1:=fsolve(’V(t)’=0,t,100..800): TT:=TT1/60:
TT1.’seconds’, TT.’minutes’;
X(TT1).’meters’, ((X(TT1)*100/2.54)/12/5280).’miles’;

0 0 300

40000

Figure 9. A maple plot
used to determine the
descent time T = 2.385
minutes.

Modeling. The field of the earth has been ignored in both models,
which is largely justified because the universal gravitation law term for
the lander and the earth is essentially zero for lander locations near the
moon.

The field for the lander and the moon is not constant, and therefore it
can be argued that conditions exist when assuming it is constant will
produce invalid and obviously incorrect results.

Are there cases when the answers for the two models differ greatly? Yes,
but the height H of retrorocket activation has to be large. This question
is re-visited in the exercises.

Control problems. The descent problem for a lunar lander is a control
problem in which the controller is the retrorocket plus the duration
of time in which it is active. All we have done here is to decide that
the descent should be controlled by retrorockets well in advance of 24
miles above the moon’s surface. The methods used here can be applied
to gain insight into the bang-bang control problem of turning on the
retrorockets for n intervals of time of durations ∆t1, . . . , ∆tn to make
an almost soft landing.

Primitive numerical methods. The predictions made here using the
computer algebra system maple can be replaced by primitive RK4 meth-
ods and graphing. No practising scientist or engineer would do only that,
however, because they want to be confident of the calculations and the
results. The best idea is to use a black box of numerical and graphi-
cal methods which have little chance of failure, e.g., a computer algebra
system or a numerical laboratory.

4.7 Lunar Lander 255

Exercises 4.7

Constant Field. Find the retrorocket
activation time T and the activation
height x(T). Assume the constant
gravitational field model. Units are
miles/hour and miles/hour per hour.

1. v0 = 1210, A = 30020.

2. v0 = 1200, A = 30100.

3. v0 = 1300, A = 32000.

4. v0 = 1350, A = 32000.

5. v0 = 1500, A = 45000.

6. v0 = 1550, A = 45000.

7. v0 = 1600, A = 53000.

8. v0 = 1650, A = 53000.

9. v0 = 1400, A = 40000.

10. v0 = 1450, A = 40000.

Variable Field. Find the retrorocket
activation time T and the activa-
tion height x(T). Assume the vari-
able gravitational field model and mks
units.

11. v0 = 540.92, g1 = 5.277.

12. v0 = 536.45, g1 = 5.288.

13. v0 = 581.15, g1 = 5.517.

14. v0 = 603.504, g1 = 5.5115.

15. v0 = 625.86, g1 = 5.59.

16. v0 = 603.504, g1 = 5.59.

17. v0 = 581.15, g1 = 5.59.

18. v0 = 670.56, g1 = 6.59.

19. v0 = 670.56, g1 = 6.83.

20. v0 = 715.26, g1 = 7.83.

Distinguishing Models. The con-
stant field model (1) and the vari-
able field model (2) are verified here,
by example, to be distinct. Find the
retrorocket activation times T1, T2 and
the activation heights x1(T1), x2(T2)
for the two models 1, 2. Relations
A = g1 − g0 and g0 = GM/R2 ap-
ply to compute g1 for the variable field
model.

21. v0 = 1200 mph, A = 10000
mph/h. Answer: 72, 66.91 miles.

22. v0 = 1200 mph, A = 12000
mph/h. Answer: 60, 56.9 miles.

23. v0 = 1300 mph, A = 10000
mph/h. Answer: 84.5, 77.7 miles.

24. v0 = 1300 mph, A = 12000
mph/h. Answer: 70.42, 66.26
miles.

256 First Order Numerical Methods

4.8 Comets

Planet Mercury. Its elliptical orbit has major semi-axis a = 0.3871
AU (astronomical units) and eccentricity e = 0.2056. The ellipse can be
described by the equations

x(t) = a cos(E(t)),
y(t) = a

√
1− e2 sin(E(t)),

where t is the mean anomaly (0 ≤ t ≤ 2π) and E(t) is the eccentric
anomaly determined from Kepler’s equation E = t+ e sin(E).

The path of mercury is an ellipse, yes. Like the earth, the path is essen-
tially circular, due to eccentricity near zero.

Halley’s Comet. The Kepler theory for mercury applies to Halley’s
comet, which has a highly elliptical orbit of eccentricity e = 0.967, major
semi-axis a = 17.8 AU and period about 76 earth-years.

Our project is to determine E(t) numerically for Halley’s comet and
plot an animation of the elliptical path of the comet.

History

Kepler’s laws of planetary motion were published in 1609 and 1618. The
laws are named after Johannes Kepler (1571-1630), a German mathe-
matician and astronomer, who formulated the laws after years of calcu-
lation based upon excellent observational data of the Danish astronomer
Tycho Brahe (1546-1601). The three laws:

I. The orbit of each planet is an ellipse with the sun at
one focus.

II. The line joining the sun to a planet sweeps out equal
areas in equal time.

III. The square of the planet’s period of revolution is pro-
portional to the cube of the major semi-axis of its el-
liptical orbit.

These laws apply not only to planets, but to satellites and comets. A
proof of Kepler’s first two laws, assuming Newton’s laws and a vector
analysis background, can be found in this text, page 563.

The elliptical orbit can be written as

x(M) = a cos(E(M)),
y(M) = b sin(E(M)),

4.8 Comets 257

where a and b are the semi-axis lengths of the ellipse. Function E is called
the eccentric anomaly and M the mean anomaly of the planet, by
astronomers.

The minor semi-axis of the ellipse is given by

b =
√

1− e2a,

where e is the eccentricity of the elliptical orbit. The mean anomaly
satisfies M = 2πt/T , where t=time and T is the period of the planet.

It is known that the first two laws of Kepler imply Kepler’s equation

E = M + e sin(E).

Kepler’s Initial Value Problem

The equation E = M + e sinE, called Kepler’s equation, is the unique
implicit solution of the separable differential equation

dE

dM
=

1
1− e cos(E)

,

E(0) = 0.
(1)

The initial value problem (1) defines the eccentric anomaly E(M). We
are able to compute values of E by suitable first order numerical methods,
especially RK4.

The reader should pause and compute dE/dM by implicit differentiation
of Kepler’s equation. The idea works on many implicit equations: find
an initial value problem by implicit differentiation, which replaces the
implicit equation.

Eccentric Anomaly and Elliptical Orbit

The solution for comet Halley uses maple in a direct manner, basing the
solution on Kepler’s equation. Details:

Kepler’s equation E = M + e sin(E)
e:=0.967:EE := unapply(RootOf(_Z-M-e*sin(_Z)),M);
Ex:=cos(EE(M)):Ey:=sqrt(1-e^2)*sin(EE(M)):
plot(EE(M),M=0..2*Pi);
plot([Ex,Ey,M=0..2*Pi]);

258 First Order Numerical Methods

2π

2π

0

M

E

Figure 10. Eccentric anomaly plot for Halley’s comet.

Figure 11. Elliptic trace plot of Halley’s comet.

Comet Halley’s Positions each Year

The elliptic trace plot can be modified to display a circle for each comet
position from year 0 to year 75. Implemented here is an approach to eval-
uation of the eccentric anomaly E(M) by numerical differential equation
methods. This method is orders of magnitude faster than the RootOf
method of the previous illustration.

The lack of circles near the focus on the right is explained by the increased
speed of the comet near the sun, which is at this focus.

Comet positions each year
e:=0.967:de:=diff(y(x),x)=1/(1-e*cos(y(x))); ic:=y(0)=0;
desolved:=dsolve({de,ic},numeric,output=listprocedure);
EE := eval(y(x),desolved):
Ex:=unapply(cos(EE(M)),M):
Ey:=unapply(sqrt(1-e^2)*sin(EE(M)),M):
snapshots:=seq([Ex(2*n*Pi/76),Ey(2*n*Pi/76)],n=0..76):
opts:=scaling=constrained,axes=boxed,style=point,

symbolsize=12,symbol=circle,thickness=2:
plot([snapshots],opts);

4.8 Comets 259

–0.2

–0.1

0

0.1

0.2

–1 –0.5 0 0.5 1
Figure 12. Halley’s comet positions each earth-year. On the axes,
one unit equals 17.8 AU.

Halley’s Comet Animation

The computer algebra system maple will be used to produce a simple
animation of Halley’s comet as it traverses its 76-year orbit around the
sun. The idea is to solve Kepler’s initial value problem in order to find
the value of the eccentric anomaly E(M), then divide the orbit into
76 frames and display each in succession to obtain the animation. The
obvious method of defining E by Kepler’s equation E = M + e sinE is
too slow for most machines, hence the differential equations method is
used.

While each comet position in Figure 13 represents an equal block of
time, about one earth-year, the amount of path traveled varies. This is
because the speed along the path is not constant, the comet traveling
fastest near the sun. The most detail is shown for an animation at 2
frames per second. The orbit graph uses one unit equal to about 17.8
astronomical units, to simplify the display.

Simple Halley’s comet animation
e:=0.967:de:=diff(y(x),x)=1/(1-e*cos(y(x))); ic:=y(0)=0;
desolved:=dsolve({de,ic},numeric,output=listprocedure);
EE := eval(y(x),desolved):
xt:=cos(EE(M)):yt:=sqrt(1-e^2)*sin(EE(M)):
opts:=view=[-1..1,-0.28..0.28],frames=76,

scaling=constrained,axes=boxed,style=point,
symbolsize=12,symbol=circle,thickness=2:

plots[animatecurve]([xt,yt,M=0..2*Pi],opts);

Improved Animation. To display the ellipse constantly and ani-
mate the comet along the ellipse requires more plot steps. The method is
illustrated in this block of maple code. The comet position for t = 2.4516
earth-years (M ≈ 2πt/76) is shown in Figure 14.

260 First Order Numerical Methods

Improved animation of Halley’s comet
e:=0.967:de:=diff(y(x),x)=1/(1-e*cos(y(x))); ic:=y(0)=0;
desolved:=dsolve({de,ic},numeric,output=listprocedure);
EE := eval(y(x),desolved):
comet:=unapply([cos(EE(M)),sqrt(1-e^2)*sin(EE(M))],M):
options1:=view=[-1..1,-0.28..0.28]:
options2:=scaling=constrained,axes=none,thickness=2:
options3:=style=point,symbolsize=24,symbol=circle:
opts1:=options1,options2,color=blue:
opts:=options1,options2,options3:
COMET:=[[comet(2*Pi*t/(76))],opts]:
ellipse:=plot([cos(x),sqrt(1-e^2)*sin(x),x=0..2*Pi],opts1):
with(plots):
F:=animate(plot,COMET,t=0..4,frames=32,background=ellipse):
G:=animate(plot,COMET,t=5..75,frames=71,background=ellipse):
H:=animate(plot,COMET,t=75..76,frames=16,background=ellipse):
display([F,G,H],insequence=true);

Figure 13. A simple Halley’s comet animation.

Figure 14. Improved Halley’s comet animation. The frame shown is
for mean anomaly M = 2.4516.

4.8 Comets 261

Exercises 4.8

Eccentric Anomaly for the Planets.
Make a plot of the eccentric anomaly
E(M) on 0 ≤M ≤ 2π.

1. Mercury, e = 0.2056

2. Venus, e = 0.0068

3. Earth, e = 0.0167

4. Mars, e = 0.0934

5. Jupiter, e = 0.0483

6. Saturn, e = 0.0560

7. Uranus, e = 0.0461

8. Neptune, e = 0.0097

Elliptic Path of the Planets. Make
a plot of the elliptic path of each
planet, using constrained scaling with
the given major semi-axis A (in astro-
nomical units AU).

9. Mercury, e = 0.2056, A = 0.39

10. Venus, e = 0.0068, A = 0.72

11. Earth, e = 0.0167, A = 1

12. Mars, e = 0.0934, A = 1.52

13. Jupiter, e = 0.0483, A = 5.20

14. Saturn, e = 0.0560, A = 9.54

15. Uranus, e = 0.0461, A = 19.18

16. Neptune e = 0.0097, A = 30.06

Planet Positions. Make a plot with
at least 8 planet positions displayed.
Use constrained scaling with major
semi-axis 1 in the plot. Display the
given major semi-axis A and period T
in the legend.

17. Mercury, e = 0.2056, A = 0.39
AU, T = 0.24 earth-years

18. Venus, e = 0.0068, A = 0.72 AU,
T = 0.62 earth-years

19. Earth, e = 0.0167, A = 1 AU,
T = 1 earth-years

20. Mars, e = 0.0934, A = 1.52 AU,
T = 1.88 earth-years

21. Jupiter, e = 0.0483, A = 5.20 AU,
T = 11.86 earth-years

22. Saturn, e = 0.0560, A = 9.54 AU,
T = 29.46 earth-years

23. Uranus, e = 0.0461, A = 19.18
AU, T = 84.01 earth-years

24. Neptune e = 0.0097, A = 30.06
AU, T = 164.8 earth-years

Comet Positions. Make a plot with
at least 8 comet positions displayed.
Use constrained scaling with major-
semiaxis 1 in the plot. Display the
given eccentricity e and period T in
the legend.

25. Churyumov-Gerasimenko orbits
the sun every 6.57 earth-years.
Discovered in 1969. Eccentricity
e = 0.632.

26. Comet Wirtanen was the original
target of the Rosetta space mis-
sion. This comet was discovered
in 1948. The comet orbits the sun
once every 5.46 earth-years. Ec-
centricity e = 0.652.

27. Comet Wild 2 was discovered in
1978. The comet orbits the sun
once every 6.39 earth-years. Ec-
centricity e = 0.540.

28. Comet Biela was discovered in
1772. It orbits the sun every
6.62 earth-years. Eccentricity e =
0.756.

29. Comet Encke was discovered in
1786. It orbits the sun each 3.31
earth-years. Eccentricity e =
0.846.

262 First Order Numerical Methods

30. Comet Giacobini-Zinner, discov-
ered in 1900, orbits the sun each
6.59 earth-years. Eccentricity e =
0.708.

31. Comet Schwassmann-Wachmann,
discovered in 1930, orbits the sun
every 5.36 earth-years. Eccentric-
ity e = 0.694.

32. Comet Swift-Tuttle was discov-
ered in 1862. It orbits the sun
each 120 earth-years. Eccentric-
ity e = 0.960.

Comet Animations. Make an anima-
tion plot of comet positions. Use con-
strained scaling with major-semiaxis 1
in the plot. Display the given period
T and eccentricity e in the legend.

33. Comet Churyumov-Gerasimenko
T = 6.57, e = 0.632.

34. Comet Wirtanen
T = 5.46, e = 0.652.

35. Comet Wild 2
T = 6.39, e = 0.540.

36. Comet Biela
T = 6.62, e = 0.756.

37. Comet Encke
T = 3.31, e = 0.846.

38. Comet Giacobini-Zinner
T = 6.59, e = 0.708.

39. Comet Schwassmann-Wachmann
T = 5.36, e = 0.694.

40. Comet Swift-Tuttle
T = 120, e = 0.960.

