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1.5 Phase Line and Bifurcation Diagrams

Technical publications may use special diagrams to display qualitative
information about the equilibrium points of the differential equation

y′(x) = f(y(x)).(1)

The right side of this equation is independent of x, hence there are no
external control terms that depend on x. Due to the lack of external
controls, the equation is said to be self-governing or autonomous.

A phase line diagram for the autonomous equation y′ = f(y) is a line
segment with labels sink, source or node, one for each root of f(y) = 0,
i.e., each equilibrium; see Figure 15. It summarizes the contents of a
direction field and threaded curves, including all equilibrium solutions.

The function f must be one-signed on the interval between adjacent
equilibrium points, because f(y) = 0 means y is an equilibrium point.
For this reason, a sign + or − is written on a phase line diagram between
each pair of adjacent equilibria.

y0 y1 y2
nodesinksource

+ − −− Figure 15. A phase line
diagram for an autonomous
equation y′ = f(y).

The labels are borrowed from the theory of fluids, and they have the
following special definitions:5

Sink y = y0 The equilibrium y = y0 attracts nearby solutions at
x = ∞: for some H > 0, |y(0) − y0| < H implies
|y(x)− y0| decreases to 0 as x→∞.

Source y = y1 The equilibrium y = y1 repels nearby solutions at
x = ∞: for some H > 0, |y(0) − y1| < H implies
that |y(x)− y1| increases as x→∞.

Node y = y2 The equilibrium y = y2 is neither a sink nor a source.

In fluids, sink means fluid is lost and source means fluid is created. A
memory device for these concepts is the kitchen sink, wherein the faucet
is the source and the drain is the sink. The stability test below in
Theorem 3 is motivated by the vector calculus results Div(P) < 0 for a
sink and Div(P) > 0 for a source, where P is the velocity field of the
fluid and Div is divergence.

5In applied literature, the special monotonic behavior required in this text’s def-
inition of a sink is relaxed to limx→∞ |y(x) − y0| = 0. See page 51 for definitions of
attracting and repelling equilibria.
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Drawing Phase Diagrams

A phase line diagram is used to draw a phase diagram of threaded
solutions and equilibrium solutions by using the three rules below.

1. Equilibrium solutions are horizontal lines in the phase
diagram.

2. Threaded solutions of y′ = f(x, y) don’t cross.6 In
particular, they don’t cross equilibrium solutions.

3. A threaded non-equilibrium solution that starts at x =
0 at a point y0 must be increasing if f(y0) > 0, and
decreasing if f(y0) < 0.

To justify 3, let y1(x) be a solution with y′1(x) = f(y1(x)) either positive
or negative at x = 0. If y′1(x1) = 0 for some x1 > 0, then let c = y1(x1)
and define equilibrium solution y2(x) = c. Then solution y1 crosses an
equilibrium solution at x = x1, violating rule 2.

y2 node

sink

sourcey0

y1

Figure 16. A phase diagram for an autonomous equation y′ = f(y).
The graphic is drawn directly from phase line diagram Figure 15, using rules
1, 2, 3. While not a replica of an accurately constructed computer graphic,

the general look of threaded solutions is sufficient for intuition.

Stability Test

The terms stable equilibrium and unstable equilibrium refer to
the predictable plots of nearby solutions. The term stable means that
solutions that start near the equilibrium will stay nearby as x → ∞.
The term unstable means not stable. Therefore, a sink is stable and a
source is unstable.

Precisely, an equilibrium y0 is stable provided for given ε > 0 there
exists some H > 0 such that |y(0) − y0| < H implies y(x) exists for
x ≥ 0 and |y(x)− y0| < ε.

6In normal applications, solutions to y′ = f(y) will not cross one another. Tech-
nically, this requires uniqueness of solutions to initial value problems, satisfied for
example if f and f ′ are continuous, because of the Picard-Lindelöf theorem.



1.5 Phase Line and Bifurcation Diagrams 51

The solution y = y(0)ekx of the equation y′ = ky exists for x ≥ 0.
Properties of exponentials justify that the equilibrium y = 0 is a sink for
k < 0, a source for k > 0 and just stable for k = 0.

Theorem 3 (Stability and Instability Conditions)
Let f and f ′ be continuous. The equation y′ = f(y) has a sink at y = y0

provided f(y0) = 0 and f ′(y0) < 0. An equilibrium y = y1 is a source
provided f(y1) = 0 and f ′(y1) > 0. There is no test when f ′ is zero at an
equilibrium. The no-test case can sometimes be decided by an additional
test:

(a) Equation y′ = f(y) has a sink at y = y0 provided f(y) changes sign
from positive to negative at y = y0.

(b) Equation y′ = f(y) has a source at y = y0 provided f(y) changes sign
from negative to positive at y = y0.

Justification is postponed to page 55.

Phase Line Diagram for the Logistic Equation

The model logistic equation y′ = (1 − y)y is used to produce the phase
line diagram in Figure 17. The logistic equation is discussed on page 6,
in connection with the Malthusian population equation y′ = ky. The
letters S and U are used for stable and unstable, while N is used for a
node. For computational details, see Example 30, page 54.

SU

y = 0 y = 1
source sink Figure 17. A phase line diagram.

The equation is y′ = (1− y)y. The equilibrium
y = 0 is unstable and y = 1 is stable.

Arrowheads are used to display the repelling or attracting nature
of the equilibrium. An equilibrium y = y0 is attracting provided
limx→∞ y(x) = y0 for all initial data y(0) with 0 < |y(0) − y0| < h
and h > 0 sufficiently small. An equilibrium y = y0 is repelling pro-
vided limx→−∞ y(x) = y0 for all initial data y(0) with 0 < |y(0)−y0| < h
and h > 0 sufficiently small.

Direction Field Plots

A direction field for y′ = f(y) can be constructed in two steps. First,
draw it along the y-axis. Secondly, duplicate the y-axis field at even
divisions along the x-axis. Duplication is justified because y′ = f(y)
does not depend on x, which means that the slope assigned to a lineal
element at (0, y0) and (x0, y0) are identical.

The following facts are assembled for reference:
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Fact 1. An equilibrium is a horizontal line. It is stable if all solutions
starting near the line remain nearby as x→∞.

Fact 2. Solutions don’t cross. In particular, any solution that starts
above or below an equilibrium solution must remain above
or below.

Fact 3. A solution curve of y′ = f(y) rigidly moved to the left or
right will remain a solution, i.e., the translate y(x− x0) of
a solution to y′ = f(y) is also a solution.

A phase line diagram is merely a summary of the solution behavior in a
direction field. Conversely, an independently made phase line diagram
can be used to enrich the detail in a direction field.

Fact 3 is used to make additional threaded solutions from an initial
threaded solution, by translation. Threaded solutions with turning points
are observed to have their turning points march monotonically to the left,
or to the right.

Bifurcations

The phase line diagram has a close relative called a bifurcation dia-
gram. The purpose of the diagram is to display qualitative information
about equilibria, across all equations y′ = f(y), obtained by varying
physical parameters appearing implicitly in f . In the simplest cases,
each parameter change to f(y) produces one phase line diagram and
the two-dimensional stack of these phase line diagrams is the bifurcation
diagram (see Figure 18).

Fish Harvesting. To understand the reason
for such diagrams, consider a private lake with fish
population y. The population is harvested at rate
k per year. A suitable sample logistic model is

y′ = y(4− y)− k

where the constant harvesting rate k is allowed to change. Given some
relevant values of k, a biologist would produce corresponding phase line
diagrams, then display them by stacking, to obtain a two-dimensional
diagram, like Figure 18.

N

y

k
U

S Figure 18. A bifurcation diagram.
The fish harvesting diagram consists of stacked
phase-line diagrams.
Legend: U=Unstable, S=Stable, N=node.
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In the figure, the vertical axis represents initial values y(0) and the hor-
izontal axis represents the harvesting rate k (axes can be swapped).

The bifurcation diagram shows how the number of equilibria and their
classifications sink, source and node change with the harvesting rate.

Shortcut methods exist for drawing bifurcation diagrams and these meth-
ods have led to succinct diagrams that remove the phase line diagram
detail. The basic idea is to eliminate the vertical lines in the plot, and
replace the equilibria dots by a curve, essentially obtained by connect-
the-dots. In current literature, Figure 18 is generally replaced by the
more succinct Figure 19.

N

k

y

U

S

Figure 19. A succinct bifurcation diagram for
fish harvesting.
Legend: U=Unstable, S=Stable, N=node.

Stability and Bifurcation Points

Biologists call a fish population stable when the fish reproduce at a rate
that keeps up with harvesting. Bifurcation diagrams show how to stock
the lake and harvest it in order to have a stable fish population.

A point in a bifurcation diagram where stability changes from stable to
unstable is called a bifurcation point, e.g., label N in Figure 19.

The upper curve in Figure 19 gives the equilibrium population sizes of a
stable fish population. Some combinations are obvious, e.g., a harvest of
2 thousand per year from an equilibrium population of about 4 thousand
fish. Less obvious is a sustainable harvest of about 4 thousand fish
with an equilibrium population of about 2 thousand fish, detected from
the portion of the curve near the bifurcation point.

Harvesting rates greater than the rate at the bifurcation point will result
in extinction. Harvesting rates less than this will also result in extinc-
tion, if the stocking size is less than the critical value realized on the
lower curve in the figure. These facts are justified solely from the phase
line diagram, because extinction means all solutions limit to y = 0.

Briefly, the lower curve gives the minimum stocking size and the
upper curve gives the limiting population or carrying capacity, for
a given harvesting rate k on the abscissa.

Examples

29 Example (No Test in Sink–Source Theorem 3) Find an example y′ =
f(y) which has an unstable node at y = 0 and no other equilibria.
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Solution: Let f(y) = y2. The equation y′ = f(y) has an equilibrium at y = 0.
In Theorem 3, there is a no test condition f ′(0) = 0.

Suppose first that the nonzero solutions are known to be y = 1/(1/y(0) − x),
for example, by consulting a computer algebra system like maple:

dsolve(diff(y(x),x)=y(x)^2,y(x));

Solutions with y(0) < 0 limit to the equilibrium solution y = 0, but positive
solutions “blow up” before x = ∞ at x = 1/y(0). The equilibrium y = 0 is an
unstable node, that is, it is not a source nor a sink.

The same conclusions are obtained from basic calculus, without solving the
differential equation. The reasoning: y′ has the sign of y2, so y′ ≥ 0 and y(x)
increases. The equilibrium y = 0 behaves like a source when y(0) > 0. For
y(0) < 0, again y(x) increases, but in this case the equilibrium y = 0 behaves
like a sink. Accordingly, y = 0 is not a source nor a sink, but a node.

30 Example (Phase Line Diagram) Verify the phase line diagram in Figure
17 for the logistic equation y′ = (1− y)y.

Solution: Let f(y) = (1 − y)y. To justify Figure 17, it suffices to find the
equilibria y = 0 and y = 1, then apply Theorem 3 to show y = 0 is a source
and y = 1 is a sink. The plan is to compute the equilibrium points, then find
f ′(y) and evaluate f ′ at the equilibria.

(1− y)y = 0 Solving f(y) = 0 for equilibria.

y = 0, y = 1 Roots found.

f ′(y) = (y − y2)′ Find f ′ from f(y) = (1− y)y.

= 1− 2y Derivative found.

f ′(0) = 1 Positive means it is a source, by Theorem 3.

f ′(1) = −1 Negative means it is a sink, by Theorem 3.

31 Example (Bifurcation Diagram) Verify the fish harvesting bifurcation di-
agram in Figure 18.

Solution: Let f(y) = y(4 − y) − k, where k is a parameter that controls the
harvesting rate per annum. A phase line diagram is made for each relevant value
of k, by applying Theorem 3 to the equilibrium points. First, the equilibria are
computed, that is, the roots of f(y) = 0:

y2 − 4y + k = 0 Standard quadratic form of f(y) = 0.

y =
4±
√

42 − 4k
2

Apply the quadratic formula.

= 2 +
√

4− k, 2−
√

4− k Evaluate. Real roots exist only for 4−k ≥ 0.

In preparation to apply Theorem 3, the derivative f ′ is calculated and then
evaluated at the equilibria:

f ′(y) = (4y − y2 − k)′ Computing f ′ from f(y) = (4− y)y − k.
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= 4− 2y Derivative found.

f ′(2 +
√

4− k) = −2
√

4− k Negative means a sink, by Theorem 3.

f ′(2−
√

4− k) = 2
√

4− k Positive means a source, by Theorem 3.

A typical phase line diagram then looks like Figure 15, page 49. In the ky-plane,
sources go through the curve y = 2 −

√
4− k and sinks go through the curve

y = 2 +
√

4− k. This justifies the bifurcation diagram in Figure 18, and also
Figure 19, except for the common point of the two curves at k = 4, y = 2.

At this common point, the differential equation is y′ = −(y−2)2. This equation
is studied in Example 29, page 53; a change of variable Y = 2 − y shows that
the equilibrium is a node.

Proofs and Details

Stability Test Proof: Let f and f ′ be continuous. It will be justified that
the equation y′ = f(y) has a stable equilibrium at y = y0, provided f(y0) = 0
and f ′(y0) < 0. The unstable case is left for the exercises.

We show that f changes sign at y = y0 from positive to negative, as follows,
hence the hypotheses of (a) hold. Continuity of f ′ and the inequality f ′(y0) < 0
imply f ′(y) < 0 on some small interval |y − y0| ≤ H . Therefore, f(y) > 0 =
f(y0) for y < y0 and f(y) < 0 = f(y0) for y > y0. This justifies that the
hypotheses of (a) apply. We complete the proof using only these hypotheses.

Global existence. It has to be established that some constant H > 0 exists,
such that |y(0)− y0| < H implies y(x) exists for x ≥ 0 and limx→∞ y(x) = y0.
To define H > 0, assume f(y0) = 0 and the change of sign condition f(y) > 0
for y0 −H ≤ y < y0, f(y) < 0 for y0 < y ≤ y0 +H.

Assume that y(x) exists as a solution to y′ = f(y) on 0 ≤ x ≤ h. It will
be established that |y(0) − y0| < H implies y(x) is monotonic and satisfies
|y(x)− y0| ≤ Hh for 0 ≤ x ≤ h.

The constant solution y0 cannot cross any other solution, therefore a solution
with y(0) > y0 satisfies y(x) > y0 for all x. Similarly, y(0) < y0 implies
y(x) < y0 for all x.

The equation y′ = f(y) dictates the sign of y′, as long as 0 < |y(x)− y0| ≤ H.
Then y(x) is either decreasing (y′ < 0) or increasing (y′ > 0) towards y0 on
0 ≤ x ≤ h, hence |y(x) − y0| ≤ H holds as long as the monotonicity holds.
Because the signs endure on 0 < x ≤ h, then |y(x)−y0| ≤ H holds on 0 ≤ x ≤ h.

Extension to 0 ≤ x < ∞. Differential equations extension theory applied to
y′ = f(y) says that a solution satisfying on its domain |y(x)| ≤ |y0| + H may
be extended to x ≥ 0. This dispenses with the technical difficulty of showing
that the domain of y(x) is x ≥ 0. Unfortunately, details of proof for extension
results require more mathematical background than is assumed for this text;
see [?], which justifies the extension from the Picard theorem.

It remains to show that limx→∞ y(x) = y1 and y1 = y0. The limit equality fol-
lows because y is monotonic. The proof concludes when y1 = y0 is established.

Already, y = y0 is the only root of f(y) = 0 in |y − y0| ≤ H. This follows from
the change of sign condition in (a). It suffices to show that f(y1) = 0, because
then y1 = y0 by uniqueness.
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To verify f(y1) = 0, apply the fundamental theorem of calculus with y′(x)
replaced by f(y(x)) to obtain the identity

y(n+ 1)− y(n) =
∫ n+1

n

f(y(x))dx.

The integral on the right limits as n→∞ to the constant f(y1), by the integral
mean value theorem of calculus, because the integrand has limit f(y1) at x =∞.
On the left side, the difference y(n+ 1)− y(n) limits to y1− y1 = 0. Therefore,
0 = f(y1).

The additional test stated in the theorem is the observation that internal to the
proof we used only the change of sign of f at y = y0, which was deduced from
the sign of the derivative f ′(y0). If f ′(y0) = 0, but the change of sign occurs,
then the details of proof still apply. The proof is complete.

Exercises 1.5

Stability-Instability Test. Find all
equilibria for the given differential
equation and then apply Theorem 3,
page 51, to obtain a classification of
each equilibrium as a source, sink or
node. Do not draw a phase line dia-
gram.

1. P ′ = (2− P )P

2. P ′ = (1− P )(P − 1)

3. y′ = y(2− 3y)

4. y′ = y(1− 5y)

5. A′ = A(A− 1)(A− 2)

6. A′ = (A− 1)(A− 2)2

7. w′ =
w(1− w)
1 + w2

8. w′ =
w(2− w)
1 + w4

9. v′ =
v(1 + v)
4 + v2

10. v′ =
(1− v)(1 + v)

2 + v2

Phase Line Diagram. Draw a phase
line diagram, with detail similar to
Figure 17.

11. y′ = y(2− y)

12. y′ = (y + 1)(1− y)

13. y′ = (y − 1)(y − 2)

14. y′ = (y − 2)(y + 3)

15. y′ = y(y − 2)(y − 1)

16. y′ = y(2− y)(y − 1)

17. y′ =
(y − 2)(y − 1)

1 + y2

18. y′ =
(2− y)(y − 1)

1 + y2

19. y′ =
(y − 2)2(y − 1)

1 + y2

20. y′ =
(y − 2)(y − 1)2

1 + y2

Bifurcation Diagram. Draw a stack
of phase line diagrams and construct
from it a succinct bifurcation diagram
with abscissa k and ordinate y(0).
Don’t justify details at a bifurcation
point.

21. y′ = (2− y)y − k

22. y′ = (3− y)y − k

23. y′ = (2− y)(y − 1)− k

24. y′ = (3− y)(y − 2)− k



1.5 Phase Line and Bifurcation Diagrams 57

25. y′ = y(2− y)(y − 1)− k

26. y′ = y(2− y)(y − 2)− k

27. y′ = y(y − 1)2 − k

28. y′ = y2(y − 1)− k

29. y′ = y(0.5− 0.001y)− k

30. y′ = y(0.4− 0.045y)− k

Details and Proofs. Supply details
for the following statements.

31. (Stability Test) Verify (b) of
Theorem 3, page 51, by altering
the proof given in the text for (a).

32. (Stability Test) Verify (b) of
Theorem 3, page 51, by means of
the change of variable x→ −x.

33. (Autonomous Equations) Let
y′ = f(y) have solution y(x) on
a < x < b. Then for any c, a <
c < b, the function z(x) = y(x+c)
is a solution of z′ = f(z).

34. (Autonomous Equations) The
method of isoclines can be ap-
plied to an autonomous equation
y′ = f(y) by choosing equally
spaced horizontal lines y = ci,
i = 1, . . . , k. Along each horizon-
tal line y = ci the slope is a con-
stant Mi = f(ci), and this deter-
mines the set of invented slopes
{Mi}ki=1 for the method of iso-
clines.


