Basic Laplace Theory

- Laplace Integral
- Direct Laplace Transform
- A First LaPlace Table
- A Minimal LaPlace Table
- Forward LaPlace Table
- Backward LaPlace Table
- Some Transform Rules
- Lerch's Cancelation Law and the Fundamental Theorem of Calculus
- Illustration in Calculus Notation
- ullet Illustration Translated to Laplace $oldsymbol{L}$ -notation

Laplace Integral

The integral

$$\int_0^\infty g(t)e^{-st}dt$$

is called the **Laplace integral** of the function g(t). It is defined by

$$\int_0^\infty g(t)e^{-st}dt \equiv \lim_{N o\infty}\int_0^N g(t)e^{-st}dt$$

and it depends on variable s. The ideas will be illustrated for g(t) = 1, g(t) = t and $g(t) = t^2$. Results appear in Table 1 infra.

Laplace Integral or Direct Laplace Transform

The Laplace integral or the direct Laplace transform of a function f(t) defined for $0 \le t < \infty$ is the ordinary calculus integration problem

$$\int_0^\infty f(t)e^{-st}dt$$
 .

The Laplace integrator is $dx = e^{-st}dt$ instead of the usual dt.

A Laplace integral is succinctly denoted in science and engineering literature by the symbol

which abbreviates

$$\int_E (f(t))dx,$$

with set $E=[0,\infty)$ and Laplace integrator $dx=e^{-st}dt$.

A First LaPlace Table

$$\int_0^\infty (1)e^{-st}dt = -(1/s)e^{-st}|_{t=0}^{t=\infty} \qquad \text{Laplace integral of } g(t) = 1.$$

$$= 1/s \qquad \text{Assumed } s > 0.$$

$$\int_0^\infty (t)e^{-st}dt = \int_0^\infty -\frac{d}{ds}(e^{-st})dt \qquad \text{Laplace integral of } g(t) = t.$$

$$= -\frac{d}{ds}\int_0^\infty (1)e^{-st}dt \qquad \text{Use}$$

$$\int \frac{d}{ds}F(t,s)dt = \frac{d}{ds}\int F(t,s)dt.$$

$$= -\frac{d}{ds}(1/s) \qquad \text{Use } L(1) = 1/s.$$

$$= 1/s^2 \qquad \text{Differentiate.}$$

$$\int_0^\infty (t^2)e^{-st}dt = \int_0^\infty -\frac{d}{ds}(te^{-st})dt \qquad \text{Laplace integral of } g(t) = t^2.$$

$$= -\frac{d}{ds}\int_0^\infty (t)e^{-st}dt$$

$$= -\frac{d}{ds}\int_0^\infty (t)e^{-st}dt$$

$$= -\frac{d}{ds}(1/s^2) \qquad \text{Use } L(t) = 1/s^2.$$

$$= 2/s^3$$

Summary

Table 1. Laplace integral $\int_0^\infty g(t)e^{-st}dt$ for g(t)=1,t and t^2 .

$$\int_0^\infty (1)e^{-st}\,dt=rac{1}{s}, \qquad \int_0^\infty (t)e^{-st}\,dt=rac{1}{s^2}, \qquad \int_0^\infty (t^2)e^{-st}\,dt=rac{2}{s^3}.$$
 In summary, $L(t^n)=rac{n!}{s^{1+n}}$

A Minimal Laplace Table

Solving differential equations by Laplace methods requires keeping a smallest table of Laplace integrals available, usually memorized. The last three entries will be verified later.

Table 2. A minimal Laplace integral table with L-notation

$$\int_0^\infty (t^n)e^{-st} dt = \frac{n!}{s^{1+n}}$$

$$\int_0^\infty (e^{at})e^{-st} dt = \frac{1}{s-a}$$

$$\int_0^\infty (\cos bt)e^{-st} dt = \frac{s}{s^2 + b^2}$$

$$\int_0^\infty (\sin bt)e^{-st} dt = \frac{b}{s^2 + b^2}$$

$$L(t^n) = \frac{n!}{s^{1+n}}$$

$$L(e^{at}) = \frac{1}{s-a}$$

$$L(\cos bt) = \frac{s}{s^2 + b^2}$$

$$L(\sin bt) = \frac{b}{s^2 + b^2}$$

Forward Laplace Table _____

The forward table finds the Laplace integral L(f(t)) when f(t) is a linear combinations of atoms. The Laplace calculus rules apply to find the Laplace integral of f(t) when it is not in this short table.

Table 3. Forward Laplace integral table

Function $f(t)$	Laplace Integral $L(f(t))$
1	$\frac{1}{s}$
t^n	$\frac{n!}{s^{1+n}}$
e^{at}	$\frac{1}{s-a}$
$\cos bt$	$rac{s}{s^2+b^2}$
$\sin bt$	$rac{b}{s^2+b^2}$

Backward Laplace Table

The backward table finds f(t) from a Laplace integral L(f(t)) expression. Always, f(t) is a linear combinations of atoms. The Laplace calculus rules apply to find f(t) when it is does not appear in this short table.

Table 4. Backward Laplace integral table

Laplace Integral $L(f(t))$	f(t)
<u>1</u>	1
<i>S</i>	
$rac{1}{s^{1+n}}$	$\frac{t^n}{n!}$
1	e^{at}
s-a	
$rac{s}{s^2+b^2}$	$\cos bt$
1	$\sin bt$
$\overline{s^2+b^2}$	b

Some Transform Rules

$$L(f(t) + g(t)) = L(f(t)) + L(g(t))$$

$$L(cf(t)) = cL(f(t))$$

$$L(y'(t)) = sL(y(t)) - y(0)$$

The integral of a sum is the sum of the integrals.

Constants c pass through the integral sign.

The t-derivative rule, or integration by parts.

Lerch's Cancelation Law and the Fundamental Theorem of Calculus

$$L(y(t)) = L(f(t))$$
 implies $y(t) = f(t)$ Lerch's cancelation law.

Lerch's cancelation law in integral form is

(1)
$$\int_0^\infty y(t)e^{-st}dt = \int_0^\infty f(t)e^{-st}dt \quad \text{implies} \quad y(t) = f(t).$$

Quadrature Methods

Lerch's Theorem is used *last* in Laplace's quadrature method. In Newton calculus, the quadrature method uses the Fundamental Theorem of Calculus *first*. The two theorems have a similar use, to *isolate* the solution y of the differential equation.

An illustration

Laplace's method will be applied to solve the initial value problem

$$y' = -1, \quad y(0) = 0.$$

Illustration Details

Table 5. Laplace method details for y' = -1, y(0) = 0.

$$y'(t)e^{-st}dt=-e^{-st}dt$$
 Multiply $y'=-1$ by $e^{-st}dt$. Integrate $t=0$ to $t=\infty$. Integrate $t=0$ to $t=\infty$. Use Table 1. $s\int_0^\infty y'(t)e^{-st}dt=-1/s$ Integrate by parts on the left. $\int_0^\infty y(t)e^{-st}dt=-1/s^2$ Use $y(0)=0$ and divide. $\int_0^\infty y(t)e^{-st}dt=\int_0^\infty (-t)e^{-st}dt$ Use Table 1. $y(t)=-t$ Apply Lerch's cancelation law.

Translation to L-notation

Table 6. Laplace method L-notation details for $y'=-1,\,y(0)=0$ translated from Table 5.

$$L(y'(t))=L(-1) \qquad \qquad \text{Apply L across $y'=-1$, or multiply $y'=-1$} \\ -1 \text{ by } e^{-st}dt \text{, integrate $t=0$ to $t=\infty$.}$$

$$L(y'(t)) = -1/s$$
 Use Table 1 forwards.

$$sL(y(t)) - y(0) = -1/s$$
 Integrate by parts on the left.

$$L(y(t)) = -1/s^2$$
 Use $y(0) = 0$ and divide.

$$L(y(t)) = L(-t)$$
 Apply Table 1 backwards.

$$y(t) = -t$$
 Invoke Lerch's cancelation law.

1 Example (Laplace method) Solve by Laplace's method the initial value problem y'=5-2t, y(0)=1 to obtain $y(t)=1+5t-t^2$.

Solution: Laplace's method is outlined in Tables 5 and 6. The L-notation of Table 6 will be used to find the solution $y(t) = 1 + 5t - t^2$.

$$L(y'(t)) = L(5-2t)$$
 Apply L across $y' = 5-2t$.
$$= 5L(1) - 2L(t)$$
 Linearity of the transform.
$$= \frac{5}{s} - \frac{2}{s^2}$$
 Use Table 1 forwards.

$$sL(y(t)) - y(0) = \frac{5}{s} - \frac{2}{s^2}$$
 Apply the t -derivative rule.

$$L(y(t))=rac{1}{s}+rac{5}{s^2}-rac{2}{s^3}$$
 Use $y(0)=1$ and divide.

$$L(y(t)) = L(1) + 5L(t) - L(t^2)$$
 Use Table 1 backwards. $= L(1 + 5t - t^2)$ Linearity of the transform.

$$y(t) = 1 + 5t - t^2$$
 Invoke Lerch's cancelation law.

2 Example (Laplace method) Solve by Laplace's method the initial value problem y'' = 10, y(0) = y'(0) = 0 to obtain $y(t) = 5t^2$.

Solution: The L-notation of Table 6 will be used to find the solution $y(t) = 5t^2$.

$$L(y''(t)) = L(10)$$
 Apply L across $y'' = 10$.

sL(y'(t))-y'(0)=L(10) Apply the t-derivative rule to y'.

s[sL(y(t))-y(0)]-y'(0)=L(10) Repeat the t-derivative rule, on y.

 $s^2L(y(t)) = 10L(1)$ Use y(0) = y'(0) = 0.

 $L(y(t)) = rac{10}{s^3}$ Use Table 1 forwards. Then divide.

 $L(y(t)) = L(5t^2)$ Use Table 1 backwards.

 $y(t) = 5t^2$ Invoke Lerch's cancelation law.