Basic Laplace Theory

- Laplace Integral
- Direct Laplace Transform
- A First LaPlace Table
- A Minimal LaPlace Table
- Forward LaPlace Table
- Backward LaPlace Table
- Some Transform Rules
- Lerch's Cancelation Law and the Fundamental Theorem of Calculus
- Illustration in Calculus Notation
- Illustration Translated to Laplace \boldsymbol{L}-notation

Laplace Integral

The integral

$$
\int_{0}^{\infty} g(t) e^{-s t} d t
$$

is called the Laplace integral of the function $\boldsymbol{g}(\boldsymbol{t})$. It is defined by

$$
\int_{0}^{\infty} g(t) e^{-s t} d t \equiv \lim _{N \rightarrow \infty} \int_{0}^{N} g(t) e^{-s t} d t
$$

and it depends on variable s. The ideas will be illustrated for $\boldsymbol{g}(\boldsymbol{t})=1, \boldsymbol{g}(\boldsymbol{t})=\boldsymbol{t}$ and $\boldsymbol{g}(\boldsymbol{t})=\boldsymbol{t}^{2}$. Results appear in Table 1 infra.

Laplace Integral or Direct Laplace Transform

The Laplace integral or the direct Laplace transform of a function $\boldsymbol{f}(\boldsymbol{t})$ defined for $0 \leq t<\infty$ is the ordinary calculus integration problem

$$
\int_{0}^{\infty} f(t) e^{-s t} d t
$$

The Laplace integrator is $\boldsymbol{d} \boldsymbol{x}=\boldsymbol{e}^{-s t} \boldsymbol{d} \boldsymbol{t}$ instead of the usual $\boldsymbol{d} \boldsymbol{t}$.

A Laplace integral is succinctly denoted in science and engineering literature by the symbol

$$
L(f(t))
$$

which abbreviates

$$
\int_{E}(f(t)) d x
$$

with set $\boldsymbol{E}=[0, \infty)$ and Laplace integrator $\boldsymbol{d} \boldsymbol{x}=\boldsymbol{e}^{-s t} d \boldsymbol{t}$.

A First LaPlace Table

$$
\begin{aligned}
\int_{0}^{\infty}(1) e^{-s t} d t & =-\left.(1 / s) e^{-s t}\right|_{t=0} ^{t=\infty} & & \text { Laplace integral of } \\
& =1 / s & & \text { Assumed } s>0 . \\
\int_{0}^{\infty}(t) e^{-s t} d t & =\int_{0}^{\infty}-\frac{d}{d s}\left(e^{-s t}\right) d t & & \text { Laplace integral of } \\
& =-\frac{d}{d s} \int_{0}^{\infty}(1) e^{-s t} d t & & \text { Use } \\
& =-\frac{d}{d s}(1 / s) & & \int \frac{d}{d s} F(t, s) d t=\frac{d}{d s} \\
& =1 / s^{2} & & \text { Use } L(1)=1 / s \\
\int_{0}^{\infty}\left(t^{2}\right) e^{-s t} d t & =\int_{0}^{\infty}-\frac{d}{d s}\left(t e^{-s t}\right) d t & & \text { Laplace integral of } \\
& =-\frac{d}{d s} \int_{0}^{\infty}(t) e^{-s t} d t & & \\
& =-\frac{d}{d s}\left(1 / s^{2}\right) & & \text { Use } L(t)=1 / s^{2} \\
& =2 / s^{3} & &
\end{aligned}
$$

Summary
Table 1. Laplace integral $\int_{0}^{\infty} g(t) e^{-s t} d t$ for $g(t)=1, t$ and t^{2}.

$$
\begin{gathered}
\int_{0}^{\infty}(1) e^{-s t} d t=\frac{1}{s}, \quad \int_{0}^{\infty}(t) e^{-s t} d t=\frac{1}{s^{2}}, \quad \int_{0}^{\infty}\left(t^{2}\right) e^{-s t} d t=\frac{2}{s^{3}} . \\
\text { In summary, } \quad L\left(t^{n}\right)=\frac{n!}{s^{1+n}}
\end{gathered}
$$

A Minimal Laplace Table

Solving differential equations by Laplace methods requires keeping a smallest table of Laplace integrals available, usually memorized. The last three entries will be verified later.

Table 2. A minimal Laplace integral table with L-notation

$$
\begin{array}{ll}
\int_{0}^{\infty}\left(t^{n}\right) e^{-s t} d t=\frac{n!}{s^{1+n}} & L\left(t^{n}\right)=\frac{n!}{s^{1+n}} \\
\int_{0}^{\infty}\left(e^{a t}\right) e^{-s t} d t=\frac{1}{s-a} & L\left(e^{a t}\right)=\frac{1}{s-a} \\
\int_{0}^{\infty}(\cos b t) e^{-s t} d t=\frac{s}{s^{2}+b^{2}} & L(\cos b t)=\frac{s}{s^{2}+b^{2}} \\
\int_{0}^{\infty}(\sin b t) e^{-s t} d t=\frac{b}{s^{2}+b^{2}} & L(\sin b t)=\frac{b}{s^{2}+b^{2}}
\end{array}
$$

Forward Laplace Table

The forward table finds the Laplace integral $L(f(t))$ when $f(t)$ is a linear combinations of atoms. The Laplace calculus rules apply to find the Laplace integral of $f(t)$ when it is not in this short table.

Table 3. Forward Laplace integral table

Function $f(t)$	Laplace Integral $L(f(t))$
1	$\frac{1}{s}$
t^{n}	$\frac{n!}{s^{1+n}}$
$e^{a t}$	$\frac{1}{s-a}$
$\cos b t$	$\frac{s}{s^{2}+b^{2}}$
$\sin b t$	$\frac{b}{s^{2}+b^{2}}$

Backward Laplace Table

The backward table finds $f(t)$ from a Laplace integral $L(f(t))$ expression. Always, $\boldsymbol{f}(\boldsymbol{t})$ is a linear combinations of atoms. The Laplace calculus rules apply to find $\boldsymbol{f}(\boldsymbol{t})$ when it is does not appear in this short table.

Table 4. Backward Laplace integral table

Laplace Integral $L(f(t))$	$f(t)$
$\frac{1}{s}$	1
$\frac{1}{s^{1+n}}$	$\frac{t^{n}}{n!}$
$\frac{1}{s-a}$	$e^{a t}$
$\frac{s}{s^{2}+b^{2}}$	$\cos b t$
$\frac{1}{s^{2}+b^{2}}$	$\frac{\sin b t}{b}$

Some Transform Rules

$$
\begin{aligned}
& L(f(t)+g(t))=L(f(t))+L(g(t)) \\
& L(c f(t))=c L(f(t)) \\
& L\left(y^{\prime}(t)\right)=s L(y(t))-y(0)
\end{aligned}
$$

The integral of a sum is the sum of the integrals.
Constants c pass through the integral sign.
The t-derivative rule, or integration by parts.

Lerch's Cancelation Law and the Fundamental Theorem of Calculus

\qquad
$L(y(t))=L(f(t))$ implies $y(t)=f(t)$ Lerch's cancelation law.
Lerch's cancelation law in integral form is

$$
\begin{equation*}
\int_{0}^{\infty} y(t) e^{-s t} d t=\int_{0}^{\infty} f(t) e^{-s t} d t \text { implies } y(t)=f(t) \tag{1}
\end{equation*}
$$

Quadrature Methods

Lerch's Theorem is used last in Laplace's quadrature method. In Newton calculus, the quadrature method uses the Fundamental Theorem of Calculus first. The two theorems have a similar use, to isolate the solution \boldsymbol{y} of the differential equation.

An illustration

Laplace's method will be applied to solve the initial value problem

$$
y^{\prime}=-1, \quad y(0)=0
$$

Illustration Details

Table 5. Laplace method details for $y^{\prime}=-1, y(0)=0$.

$$
\begin{array}{ll}
y^{\prime}(t) e^{-s t} d t=-e^{-s t} d t & \begin{array}{l}
\text { Multiply } y^{\prime}=-1 \text { by } \\
e^{-s t} d t .
\end{array} \\
\int_{0}^{\infty} y^{\prime}(t) e^{-s t} d t=\int_{0}^{\infty}-e^{-s t} d t & \begin{array}{l}
\text { Integrate } t=0 \text { to } \\
t=\infty
\end{array} \\
\int_{0}^{\infty} y^{\prime}(t) e^{-s t} d t=-1 / s & \text { Use Table 1. } \\
s \int_{0}^{\infty} y(t) e^{-s t} d t-y(0)=-1 / s & \begin{array}{l}
\text { Integrate by parts on } \\
\text { the left. }
\end{array} \\
\int_{0}^{\infty} y(t) e^{-s t} d t=-1 / s^{2} & \begin{array}{l}
\text { Use } y(0)=0 \text { and } \\
\text { divide. }
\end{array} \\
\int_{0}^{\infty} y(t) e^{-s t} d t=\int_{0}^{\infty}(-t) e^{-s t} d t & \text { Use Table 1. } \\
y(t)=-t & \begin{array}{l}
\text { Apply Lerch's can- } \\
\text { celation law. }
\end{array}
\end{array}
$$

Translation to L-notation

\qquad
Table 6. Laplace method L-notation details for $y^{\prime}=-1, y(0)=0$ translated from Table 5.

$$
\begin{array}{ll}
L\left(y^{\prime}(t)\right)=L(-1) & \text { Apply } L \text { across } y^{\prime}=-1 \text {, or multiply } y^{\prime}= \\
& -1 \text { by } e^{-s t} d t, \text { integrate } t=0 \text { to } t=\infty . \\
L\left(y^{\prime}(t)\right)=-1 / s & \text { Use Table 1 forwards. } \\
s L(y(t))-y(0)=-1 / s & \text { Integrate by parts on the left. } \\
L(y(t))=-1 / s^{2} & \text { Use } y(0)=0 \text { and divide. } \\
L(y(t))=L(-t) & \text { Apply Table 1 backwards. } \\
y(t)=-t & \text { Invoke Lerch's cancelation law. }
\end{array}
$$

1 Example (Laplace method) Solve by Laplace's method the initial value problem $y^{\prime}=5-2 t, y(0)=1$ to obtain $y(t)=1+5 t-t^{2}$.

Solution: Laplace's method is outlined in Tables 5 and 6 . The L-notation of Table 6 will be used to find the solution $y(t)=1+5 t-t^{2}$.

$$
\begin{array}{rlrl}
L\left(y^{\prime}(t)\right) & =L(5-2 t) & & \text { Apply } L \text { across } y^{\prime}=5-2 t . \\
& =5 L(1)-2 L(t) & & \text { Linearity of the transform. } \\
& =\frac{5}{s}-\frac{2}{s^{2}} & & \text { Use Table 1 forwards. } \\
s L(y(t)) & -y(0)=\frac{5}{s}-\frac{2}{s^{2}} & & \text { Apply the } t \text {-derivative rule. } \\
L(y(t))=\frac{1}{s}+\frac{5}{s^{2}}-\frac{2}{s^{3}} & & \text { Use } y(0)=1 \text { and divide. } \\
L(y(t))=L(1)+5 L(t)-L\left(t^{2}\right) & & \text { Use Table 1 backwards. } \\
& =L\left(1+5 t-t^{2}\right) & & \text { Linearity of the transform. } \\
y(t)=1+5 t-t^{2} & & \text { Invoke Lerch's cancelation law. }
\end{array}
$$

2 Example (Laplace method) Solve by Laplace's method the initial value problem $y^{\prime \prime}=10, y(0)=y^{\prime}(0)=0$ to obtain $y(t)=5 t^{2}$.
Solution: The L-notation of Table 6 will be used to find the solution $\boldsymbol{y}(t)=5 \boldsymbol{t}^{2}$.

$$
\begin{aligned}
& L\left(y^{\prime \prime}(t)\right)=L(10) \\
& s L\left(y^{\prime}(t)\right)-y^{\prime}(0)=L(10) \\
& s[s L(y(t))-y(0)]-y^{\prime}(0)=L(10) \\
& s^{2} L(y(t))=10 L(1) \\
& L(y(t))=\frac{10}{s^{3}} \\
& L(y(t))=L\left(5 t^{2}\right) \\
& y(t)=5 t^{2}
\end{aligned}
$$

Apply L across $y^{\prime \prime}=10$.
Apply the t-derivative rule to y^{\prime}. Repeat the t-derivative rule, on \boldsymbol{y}.
Use $\boldsymbol{y}(0)=y^{\prime}(0)=0$.
Use Table 1 forwards. Then divide.
Use Table 1 backwards.
Invoke Lerch's cancelation law.

