An RREF Method for Finding Inverses

An efficient method to find the inverse \boldsymbol{B} of a square matrix \boldsymbol{A}, should it happen to exist, is to form the augmented matrix $C=\operatorname{aug}(A, I)$ and then read off B as the package of the last \boldsymbol{n} columns of $\operatorname{rref}(\boldsymbol{C})$. This method is based upon the equivalence

$$
\operatorname{rref}(\operatorname{aug}(A, I))=\operatorname{aug}(I, B) \quad \text { if and only if } \quad A B=I
$$

Main Results

\qquad

Theorem 1 (Inverse Test)

If \boldsymbol{A} and \boldsymbol{B} are square matrices such that $\boldsymbol{A B}=\boldsymbol{B}$, then also $\boldsymbol{B} \boldsymbol{A}=\boldsymbol{I}$. Therefore, only one of the equalities $\boldsymbol{A B}=\boldsymbol{I}$ or $\boldsymbol{B} \boldsymbol{A}=\boldsymbol{I}$ is required to check an inverse.

Theorem 2 (The rref Inversion Method)
Let \boldsymbol{A} and \boldsymbol{B} denote square matrices. Then
(a) If $\operatorname{rref}(\operatorname{aug}(A, I))=\operatorname{aug}(I, B)$, then $\boldsymbol{A B}=\boldsymbol{B} \boldsymbol{A}=\boldsymbol{I}$ and B is the inverse of \boldsymbol{A}.
(b) If $A B=B A=I$, then $\operatorname{rref}(\operatorname{aug}(A, I))=\operatorname{aug}(I, B)$.
(c) If $\operatorname{rref}(\operatorname{aug}(A, I))=\operatorname{aug}(C, B)$ and $C \neq I$, then \boldsymbol{A} is not invertible.

Finding inverses

The rref inversion method will be illustrated for the matrix

$$
C=\left(\begin{array}{rrr}
1 & 0 & 1 \\
0 & 1 & -1 \\
0 & 1 & 1
\end{array}\right)
$$

Define the first frame of the sequence to be $C_{1}=\operatorname{aug}(C, I)$, then compute the frame sequence to $\operatorname{rref}(C)$ as follows.

$$
\begin{aligned}
& C_{1}=\left(\begin{array}{rrr|rrr}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & -1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right) \\
& C_{2}=\left(\begin{array}{rrr|rrr}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & -1 & 0 & 1 & 0 \\
0 & 0 & 2 & 0 & -1 & 1
\end{array}\right) \\
& C_{3}=\left(\begin{array}{rrr|rrr}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & -1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & -1 / 2 & 1 / 2
\end{array}\right) \\
& C_{4}=\left(\begin{array}{rrr|rrr}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 / 2 & 1 / 2 \\
0 & 0 & 1 & 0 & -1 / 2 & 1 / 2
\end{array}\right) \\
& C_{5}=\left(\begin{array}{rrr|rrr}
1 & 0 & 0 & 1 & 1 / 2 & -1 / 2 \\
0 & 1 & 0 & 0 & 1 / 2 & 1 / 2 \\
0 & 0 & 1 & 0 & -1 / 2 & 1 / 2
\end{array}\right) \quad \begin{array}{l}
\text { combo }(3,1,-1) \\
\quad \text { Last Frame }
\end{array}
\end{aligned}
$$

Extract the Inverse Matrix

The theory

$$
\operatorname{rref}(\operatorname{aug}(A, I))=\operatorname{aug}(I, B) \quad \text { if and only if } \quad A B=I
$$

implies that the inverse of \boldsymbol{A} is the matrix in the right panel of the last frame

$$
C_{5}=\left(\begin{array}{rrr|rrr}
1 & 0 & 0 & 1 & 1 / 2 & -1 / 2 \\
0 & 1 & 0 & 0 & 1 / 2 & 1 / 2 \\
0 & 0 & 1 & 0 & -1 / 2 & 1 / 2
\end{array}\right)
$$

Then

$$
A^{-1}=\left(\begin{array}{rrr}
1 & 1 / 2 & -1 / 2 \\
0 & 1 / 2 & 1 / 2 \\
0 & -1 / 2 & 1 / 2
\end{array}\right)
$$

