An RREF Method for Finding Inverses

An efficient method to find the inverse B of a square matrix A, should it happen to exist, is to form the augmented matrix $C = \operatorname{aug}(A, I)$ and then read off B as the package of the last n columns of $\operatorname{rref}(C)$. This method is based upon the equivalence

 $\operatorname{rref}(\operatorname{aug}(A, I)) = \operatorname{aug}(I, B)$ if and only if AB = I.

Main Results

Theorem 1 (Inverse Test)

If A and B are square matrices such that AB = I, then also BA = I. Therefore, only one of the equalities AB = I or BA = I is required to check an inverse.

Theorem 2 (The rref Inversion Method)

Let A and B denote square matrices. Then

- (a) If $\operatorname{rref}(\operatorname{aug}(A, I)) = \operatorname{aug}(I, B)$, then AB = BA = I and B is the inverse of A.
- (b) If AB = BA = I, then $\operatorname{rref}(\operatorname{aug}(A, I)) = \operatorname{aug}(I, B)$.

(c) If $\operatorname{rref}(\operatorname{aug}(A, I)) = \operatorname{aug}(C, B)$ and $C \neq I$, then A is not invertible.

Finding inverses .

The **rref** inversion method will be illustrated for the matrix

$$C = \left(egin{array}{ccc} 1 & 0 & 1 \ 0 & 1 & -1 \ 0 & 1 & 1 \end{array}
ight).$$

Define the first frame of the sequence to be $C_1 = \operatorname{aug}(C, I)$, then compute the frame sequence to $\operatorname{rref}(C)$ as follows.

$$egin{aligned} C_1 &= egin{pmatrix} 1 & 0 & 1 & | 1 & 0 & 0 \ 0 & 1 & -1 & | 0 & 1 & 0 \ 0 & 1 & 1 & | 0 & 0 & 1 \end{pmatrix} \ C_2 &= egin{pmatrix} 1 & 0 & 1 & | 1 & 0 & 0 \ 0 & 1 & -1 & | 0 & 1 & 0 \ 0 & 0 & 2 & | 0 & -1 & 1 \end{pmatrix} \ C_3 &= egin{pmatrix} 1 & 0 & 1 & | 1 & 0 & 0 \ 0 & 1 & -1 & | 0 & 1 & 0 \ 0 & 1 & -1 & | 0 & 1 & 0 \ 0 & 0 & 1 & | 0 & -1 & /2 & 1 & /2 \end{pmatrix} \ C_4 &= egin{pmatrix} 1 & 0 & 1 & | 1 & 0 & 0 \ 0 & 1 & 0 & | 0 & -1 & /2 & 1 & /2 \ 0 & 0 & 1 & | 0 & -1 & /2 & 1 & /2 \ 0 & 0 & 1 & | 0 & -1 & /2 & 1 & /2 \end{pmatrix} \ C_5 &= egin{pmatrix} 1 & 0 & 0 & 1 & 1 & /2 & -1 & /2 \ 0 & 1 & 0 & 0 & 1 & 1 & /2 & -1 & /2 \ 0 & 1 & 0 & 0 & 1 & 1 & /2 & -1 & /2 \ 0 & 0 & 1 & | 0 & -1 & /2 & 1 & /2 \end{pmatrix} \end{aligned}$$

First Frame

combo(3,2,-1)

mult(3,1/2)

combo(3,2,1)

combo(3,1,-1)

Last Frame

Extract the Inverse Matrix

The theory

 $\operatorname{rref}(\operatorname{aug}(A,I)) = \operatorname{aug}(I,B)$ if and only if AB = I

implies that the inverse of A is the matrix in the right panel of the last frame

$$C_5 = egin{pmatrix} 1 & 0 & 0 & 1 & 1/2 & -1/2 \ 0 & 1 & 0 & 0 & 1/2 & 1/2 \ 0 & 0 & 1 & 0 & -1/2 & 1/2 \end{pmatrix}.$$

Then

$$A^{-1}=\left(egin{array}{cccc} 1&1/2&-1/2\ 0&1/2&1/2\ 0&-1/2&1/2\ \end{array}
ight).$$