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Elementary Matrices
Definition. An elementary matrix E is the result of applying a combination, multiply or
swap rule to the identity matrix.
An elementary matrix is then the second frame after a combo, swap or mult toolkit
operation which has been applied to a first frame equal to the identity matrix.
Example: 1 0 0

0 1 0
0 0 1

 First frame = identity matrix.

 1 0 0
0 1 0
−5 0 1

 Second frame
Elementary combo matrix
combo(1,3,-5)



Computer algebra systems and elementary matrices
The computer algebra system maple displays typical 4 × 4 elementary matrices
(C=Combination, M=Multiply, S=Swap) as follows.

with(linalg): with(LinearAlgebra):
Id:=diag(1,1,1,1); Id:=IdentityMatrix(4);
C:=addrow(Id,2,3,c); C:=RowOperation(Id,[3,2],c);
M:=mulrow(Id,3,m); M:=RowOperation(Id,3,m);
S:=swaprow(Id,1,4); S:=RowOperation(Id,[4,1]);

The answers:

C =

 1 0 0 0
0 1 0 0
0 c 1 0
0 0 0 1

 , M =

 1 0 0 0
0 1 0 0
0 0 m 0
0 0 0 1

 ,

S =

 0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

 .



Constructing elementary matrices E and their inverses E−1

Mult Change a one in the identity matrix to symbol m 6= 0.
Combo Change a zero in the identity matrix to symbol c.
Swap Interchange two rows of the identity matrix.

Constructing E−1 from elementary matrix E

Mult Change diagonal multiplier m 6= 0 in E to 1/m.
Combo Change multiplier c in E to−c.
Swap The inverse of E is E itself.



Fundamental Theorem on Elementary Matrices

Theorem 1 (Frame sequences and elementary matrices)
In a frame sequence, let the second frame A2 be obtained from the first frame
A1 by a combo, swap or mult toolkit operation. Let n equal the row dimenson
of A1.Then there is correspondingly an n× n combo, swap or mult elementary
matrix E such that

A2 = EA1.

Theorem 2 (The rref and elementary matrices)
Let A be a given matrix of row dimension n. Then there exist n × n elementary
matrices E1, E2, . . . , Ek such that

rref(A) = Ek · · ·E2E1A.



Proof of Theorem 1
The first result is the observation that left multiplication of matrix A1 by elementary matrix
E gives the answer A2 = EA1 which is obtained by applying the corresponding combo,
swap or mult toolkit operation. This fact is discovered by doing examples, then a formal
proof can be constructed (not presented here).

Proof of Theorem 2
The second result applies the first result multiple times to obtain elementary matrices E1,
E2, . . . which represent the multiply, combination and swap operations performed in the
frame sequence which take the First Frame A1 = A into the Last Frame Ak+1 =
rref(A1). Combining the identities

A2 = E1A1, A3 = E2A2, . . . , Ak+1 = EkAk

gives the matrix multiply equation

Ak+1 = EkEk−1 · · ·E2E1A1

or equivalently the theorem’s result, because Ak+1 = rref(A) and A1 = A.



A certain 6-frame sequence .

A1 =

 1 2 3
2 4 0
3 6 3

 Frame 1, original matrix.

A2 =

 1 2 3
0 0 −6
3 6 3

 Frame 2, combo(1,2,-2).

A3 =

 1 2 3
0 0 1
3 6 3

 Frame 3, mult(2,-1/6).

A4 =

 1 2 3
0 0 1
0 0 −6

 Frame 4, combo(1,3,-3).

A5 =

 1 2 3
0 0 1
0 0 0

 Frame 5, combo(2,3,-6).

A6 =

 1 2 0
0 0 1
0 0 0

 Frame 6, combo(2,1,-3). Found rref(A1).



Continued
The corresponding 3× 3 elementary matrices are

E1 =

 1 0 0
−2 1 0
0 0 1

 Frame 2, combo(1,2,-2) applied to I.

E2 =

 1 0 0
0 −1/6 0
0 0 1

 Frame 3, mult(2,-1/6) applied to I.

E3 =

 1 0 0
0 1 0
−3 0 1

 Frame 4, combo(1,3,-3) applied to I.

E4 =

 1 0 0
0 1 0
0 −6 1

 Frame 5, combo(2,3,-6) applied to I.

E5 =

 1 −3 0
0 1 0
0 0 1

 Frame 6, combo(2,1,-3) applied to I.



Frame Sequence Details

A2 = E1A1 Frame 2, E1 equals combo(1,2,-2) on I .
A3 = E2A2 Frame 3, E2 equals mult(2,-1/6) on I .
A4 = E3A3 Frame 4, E3 equals combo(1,3,-3) on I .
A5 = E4A4 Frame 5, E4 equals combo(2,3,-6) on I .
A6 = E5A5 Frame 6, E5 equals combo(2,1,-3) on I .
A6 = E5E4E3E2E1A1 Summary frames 1-6.

Then
rref(A1) = E5E4E3E2E1A1,

which is the result of the Theorem.



Fundamental Theorem Illustrated
The summary:

A6 =

1−3 0
0 1 0
0 0 1

1 0 0
0 1 0
0−6 1

 1 0 0
0 1 0
−3 0 1

1 0 0

0−1
6 0

0 0 1

 1 0 0
−2 1 0
0 0 1

A1

Because A6 = rref(A1), the above equation gives the inverse relationship

A1 = E−11 E−12 E−13 E−14 E−15 rref(A1).

Each inverse matrix is simplified by the rules for constructing E−1 from elementary matrix
E, the result being

A1 =

1 0 0
2 1 0
0 0 1

1 0 0
0−6 0
0 0 1

1 0 0
0 1 0
3 0 1

1 0 0
0 1 0
0 6 1

1 3 0
0 1 0
0 0 1

 rref(A1)



Theorem 3 (RREF Inverse Method)

rref(aug(A, I)) = aug(I,B) if and only if AB = I.

Proof: For any matrix E there is the matrix multiply identity

E aug(C,D) = aug(EC,ED).

This identity is proved by arguing that each side has identical columns. For example, col(LHS, 1) =
E col(C, 1) = col(RHS, 1).

Assume C = aug(A, I) satisfies rref(C) = aug(I,B). The fundamental theorem of elementary matrices
implies Ek · · ·E1C = rref(C). Then

rref(C) = aug(Ek · · ·E1A,Ek · · ·E1I) = aug(I,B)

implies that Ek · · ·E1A = I and Ek · · ·E1I = B. Together, BA = I and then B is the inverse of A.

Conversely, assume that AB = I. Then A has inverse B. The fundamental theorem of elementary matri-
ces implies the identity Ek · · ·E1A = rref(A) = I. It follows that B = Ek · · ·E1. Then rref(C) =
Ek · · ·E1 aug(A, I) = aug(Ek · · ·E1A,Ek · · ·E1I) = aug(I,B).


