Stability of Dynamical systems

- Stability
- Isolated equilibria
- Classification of Isolated Equilibria
- Attractor and Repeller
- Almost linear systems
- Jacobian Matrix

Stability

Consider an autonomous system $\overrightarrow{\mathbf{u}}^{\prime}(\boldsymbol{t})=\overrightarrow{\mathbf{f}}(\overrightarrow{\mathbf{u}}(\boldsymbol{t}))$ with $\overrightarrow{\mathbf{f}}$ continuously differentiable in a region \boldsymbol{D} in the plane.

Stable equilibrium. An equilibrium point $\overrightarrow{\mathbf{u}}_{0}$ in \boldsymbol{D} is said to be stable provided for each $\boldsymbol{\epsilon}>\mathbf{0}$ there corresponds $\boldsymbol{\delta}>\mathbf{0}$ such that (a) and (b) hold:
(a) Given $\overrightarrow{\mathbf{u}}(0)$ in D with $\left\|\overrightarrow{\mathbf{u}}(0)-\overrightarrow{\mathbf{u}}_{0}\right\|<\boldsymbol{\delta}$, then $\overrightarrow{\mathbf{u}}(\boldsymbol{t})$ exists on $\mathbf{0} \leq \boldsymbol{t}<\infty$.
(b) Inequality $\left\|\overrightarrow{\mathrm{u}}(t)-\overrightarrow{\mathrm{u}}_{0}\right\|<\boldsymbol{\epsilon}$ holds for $0 \leq t<\infty$.

Unstable equilibrium. The equilibrium point $\overrightarrow{\mathbf{u}}_{0}$ is called unstable provided it is not stable, which means (a) or (b) fails (or both).

Asymptotically stable equilibrium. The equilibrium point $\overrightarrow{\mathbf{u}}_{0}$ is said to be asymptotically stable provided (a) and (b) hold (it is stable), and additionally
(c) $\lim _{t \rightarrow \infty}\left\|\overrightarrow{\mathrm{u}}(t)-\overrightarrow{\mathrm{u}}_{0}\right\|=0$ for $\left\|\overrightarrow{\mathrm{u}}(0)-\overrightarrow{\mathbf{u}}_{0}\right\|<\delta$.

Isolated equilibria

An autonomous system is said to have an isolated equilibrium at $\overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{u}}_{0}$ provided $\overrightarrow{\mathbf{u}}_{0}$ is the only constant solution of the system in $\left|\overrightarrow{\mathbf{u}}-\overrightarrow{\mathbf{u}}_{0}\right|<\boldsymbol{r}$, for $\boldsymbol{r}>\mathbf{0}$ sufficiently small.

Theorem 1 (Isolated Equilibrium)

The following are equivalent for a constant planar system $\overrightarrow{\mathbf{u}}^{\prime}(\boldsymbol{t})=\boldsymbol{A} \overrightarrow{\mathbf{u}}(\boldsymbol{t})$:

1. The system has an isolated equilibrium at $\overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{0}}$.
2. $\operatorname{det}(A) \neq 0$.
3. The roots λ_{1}, λ_{2} of $\operatorname{det}(A-\lambda I)=0$ satisfy $\lambda_{1} \lambda_{2} \neq 0$.

Proof: The expansion $\operatorname{det}(A-\lambda I)=\left(\lambda_{1}-\lambda\right)\left(\lambda_{2}-\lambda\right)=\lambda^{2}-\left(\lambda_{1}+\lambda_{2}\right) \lambda+\lambda_{1} \lambda_{2}$ shows that $\operatorname{det}(A)=$ $\lambda_{1} \boldsymbol{\lambda}_{2}$. Hence $\mathbf{2} \equiv \mathbf{3}$. We prove now $\mathbf{1} \equiv \mathbf{2}$. If $\operatorname{det}(\boldsymbol{A})=\mathbf{0}$, then $\boldsymbol{A} \overrightarrow{\mathrm{u}}=\overrightarrow{0}$ has infinitely many solutions $\overrightarrow{\mathrm{u}}$ on a line through $\overrightarrow{0}$, therefore $\overrightarrow{\mathbf{u}}=\overrightarrow{0}$ is not an isolated equilibrium. If $\operatorname{det}(\boldsymbol{A}) \neq 0$, then $\boldsymbol{A} \overrightarrow{\mathrm{u}}=\overrightarrow{0}$ has exactly one solution $\overrightarrow{\mathrm{u}}=\overrightarrow{0}$, so the system has an isolated equilibrium at $\overrightarrow{\mathbf{u}}=\overrightarrow{0}$.

Classification of Isolated Equilibria

For linear equations

$$
\overrightarrow{\mathbf{u}}^{\prime}(t)=A \overrightarrow{\mathbf{u}}(t)
$$

we explain the phase portrait classifications

saddle, node, spiral, center

near an isolated equilibrium point $\overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{0}}$, and how to detect these classifications, when they occur.

Symbols $\boldsymbol{\lambda}_{1}, \boldsymbol{\lambda}_{2}$ are the roots of $\operatorname{det}(\boldsymbol{A}-\boldsymbol{\lambda} \boldsymbol{I})=0$.
Atoms corresponding to roots $\boldsymbol{\lambda}_{\mathbf{1}}, \boldsymbol{\lambda}_{\mathbf{2}}$ happen to classify the phase portrait as well as its stability. A shortcut will be explained to determine a classification, based only on the atoms.

Figure 1. Saddle

Figure 3. Proper node

Figure 5. Center

Figure 2. Improper node

Figure 4. Spiral

Saddle $\boldsymbol{\lambda}_{1}, \boldsymbol{\lambda}_{2}$ real, $\boldsymbol{\lambda}_{1} \boldsymbol{\lambda}_{2}<0$

A saddle has solution formula

$$
\begin{aligned}
& \overrightarrow{\mathbf{u}}(t)=e^{\lambda_{1} t} \overrightarrow{\mathbf{c}}_{1}+e^{\lambda_{2} t} \overrightarrow{\mathbf{c}}_{2}, \\
& \overrightarrow{\mathbf{c}}_{1}=\frac{A-\lambda_{2} I}{\lambda_{1}-\lambda_{2}} \overrightarrow{\mathbf{u}}(0), \quad \overrightarrow{\mathbf{c}}_{2}=\frac{A-\lambda_{1} I}{\lambda_{2}-\lambda_{1}} \overrightarrow{\mathbf{u}}(0) .
\end{aligned}
$$

The phase portrait shows two lines through the origin which are tangents at $t= \pm \infty$ for all orbits.

A saddle is unstable at $t=\infty$ and $t=-\infty$, due to the limits of the atoms $e^{r_{1} t}, e^{r_{2} t}$ at $t= \pm \infty$.

Node $\quad \boldsymbol{\lambda}_{1}, \boldsymbol{\lambda}_{2}$ real, $\boldsymbol{\lambda}_{1} \boldsymbol{\lambda}_{2}>0$
Case $\boldsymbol{\lambda}_{1}=\boldsymbol{\lambda}_{2}$. An improper node has solution formula

$$
\begin{aligned}
& \overrightarrow{\mathbf{u}}(t)=e^{\lambda_{1} t} \overrightarrow{\mathbf{c}}_{1}+t e^{\lambda_{1} t} \overrightarrow{\mathbf{c}}_{2} \\
& \overrightarrow{\mathbf{c}}_{1}=\overrightarrow{\mathbf{u}}(0), \quad \overrightarrow{\mathbf{c}}_{2}=\left(A-\lambda_{1} I\right) \overrightarrow{\mathbf{u}}(0) .
\end{aligned}
$$

An improper node is further classified as a degenerate node ($\overrightarrow{\mathbf{c}}_{2} \neq$ $\overrightarrow{0}$) or a star node ($\overrightarrow{\mathrm{c}}_{2}=\overrightarrow{\mathbf{0}}$). Discussed below is subcase $\lambda_{1}=$ $\lambda_{2}<0$. For subcase $\lambda_{1}=\lambda_{2}>0$, replace ∞ by $-\infty$.
degenerate node
A phase portrait has all trajectories tangent at $t=\infty$ to direction $\overrightarrow{\mathbf{c}}_{2}$.
star node

A phase portrait consists of trajectories $\overrightarrow{\mathbf{u}}(t)=e^{\lambda_{1} t} \overrightarrow{\mathbf{c}}_{1}$, a straight line, with limit $\overrightarrow{0}$ at $t=\infty$. Vector $\overrightarrow{\mathbf{c}}_{1}$ can be any direction.

Node
λ_{1}, λ_{2} real, $\lambda_{1} \lambda_{2}>0$
Case $\boldsymbol{\lambda}_{1} \neq \boldsymbol{\lambda}_{2}$. A proper node is any node that is not improper. Its solution formula is

$$
\begin{aligned}
& \overrightarrow{\mathbf{u}}(t)=e^{\lambda_{1} t} \overrightarrow{\mathbf{c}}_{1}+e^{\lambda_{2} t} \overrightarrow{\mathbf{c}}_{2}, \\
& \overrightarrow{\mathbf{c}}_{1}=\frac{A-\lambda_{2} I}{\lambda_{1}-\lambda_{2}} \overrightarrow{\mathbf{u}}(0), \quad \overrightarrow{\mathbf{c}}_{2}=\frac{A-\lambda_{1} I}{\lambda_{2}-\lambda_{1}} \overrightarrow{\mathbf{u}}(0) .
\end{aligned}
$$

- A trajectory near a proper node satisfies, for some direction $\overrightarrow{\mathrm{v}}$, $\lim _{t \rightarrow \omega} \overrightarrow{\mathbf{u}}^{\prime}(t) /\left|\overrightarrow{\mathbf{u}}^{\prime}(t)\right|=\overrightarrow{\mathrm{v}}$, for either $\omega=\infty$ or $\omega=-\infty$. Briefly, $\overrightarrow{\mathrm{u}}(t)$ is tangent to $\overrightarrow{\mathrm{v}}$ at $t=\omega$.
- To each direction $\overrightarrow{\mathbf{v}}$ corresponds some $\overrightarrow{\mathbf{u}}(t)$ tangent to $\overrightarrow{\mathrm{v}}$.

Spiral $\quad \lambda_{1}=\bar{\lambda}_{2}=a+i b$ complex, $a \neq 0, b>0$.
A spiral has solution formula

$$
\begin{aligned}
& \overrightarrow{\mathrm{u}}(t)=e^{a t} \cos (b t) \overrightarrow{\mathrm{c}}_{1}+e^{a t} \sin (b t) \overrightarrow{\mathbf{c}}_{2} \\
& \overrightarrow{\mathrm{c}}_{1}=\overrightarrow{\mathrm{u}}(0), \quad \overrightarrow{\mathrm{c}}_{2}=\frac{A-a I}{b} \overrightarrow{\mathbf{u}}(0)
\end{aligned}
$$

All solutions are bounded harmonic oscillations of natural frequency \boldsymbol{b} times an exponential amplitude which grows if $\boldsymbol{a}>0$ and decays if $a<0$. An orbit in the phase plane spirals out if $a>0$ and spirals in if $a<0$.

Center $\quad \lambda_{1}=\bar{\lambda}_{2}=a+i b$ complex, $a=0, b>0$
A center has solution formula

$$
\begin{aligned}
& \overrightarrow{\mathbf{u}}(t)=\cos (b t) \overrightarrow{\mathrm{c}}_{1}+\sin (b t) \overrightarrow{\mathrm{c}}_{2} \\
& \overrightarrow{\mathrm{c}}_{1}=\overrightarrow{\mathrm{u}}(0), \quad \overrightarrow{\mathrm{c}}_{2}=\frac{1}{b} A \overrightarrow{\mathrm{u}}(0)
\end{aligned}
$$

All solutions are bounded harmonic oscillations of natural frequency b. Orbits in the phase plane are periodic closed curves of period $2 \pi / b$ which encircle the origin.

Attractor and Repeller

- An equilibrium point is called an attractor provided solutions starting nearby limit to the point as $t \rightarrow \infty$.
- A repeller is an equilibrium point such that solutions starting nearby limit to the point as $t \rightarrow-\infty$.
- Terms like attracting node and repelling spiral are defined analogously.

Almost linear systems

A nonlinear planar autonomous system $\overrightarrow{\mathbf{u}}^{\prime}(\boldsymbol{t})=\overrightarrow{\mathrm{f}}(\overrightarrow{\mathbf{u}}(\boldsymbol{t}))$ is called almost linear at equilibrium point $\overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{u}}_{0}$ if there is a 2×2 matrix \boldsymbol{A} and a vector function $\overrightarrow{\mathrm{g}}$ such that

$$
\begin{aligned}
& \overrightarrow{\mathbf{f}}(\overrightarrow{\mathbf{u}})=A\left(\overrightarrow{\mathbf{u}}-\overrightarrow{\mathbf{u}}_{0}\right)+\overrightarrow{\mathrm{g}}(\overrightarrow{\mathbf{u}}) \\
& \lim _{\left\|\overrightarrow{\mathbf{u}}-\overrightarrow{\mathbf{u}}_{0}\right\| \rightarrow 0} \frac{\|\overrightarrow{\mathbf{g}}(\overrightarrow{\mathbf{u}})\|}{\left\|\overrightarrow{\mathbf{u}}-\overrightarrow{\mathbf{u}}_{0}\right\|}=0
\end{aligned}
$$

The function $\overrightarrow{\mathbf{g}}$ has the same smoothness as $\overrightarrow{\mathbf{f}}$.
We investigate the possibility that a local phase diagram at $\overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{u}}_{\mathbf{0}}$ for the nonlinear system $\overrightarrow{\mathbf{u}}^{\prime}(t)=\overrightarrow{\mathbf{f}}(\overrightarrow{\mathbf{u}}(t))$ is graphically identical to the one for the linear system $\overrightarrow{\mathbf{y}}^{\prime}(t)=$ $\boldsymbol{A} \overrightarrow{\mathbf{y}}(\boldsymbol{t})$ at $\overrightarrow{\mathbf{y}}=\mathbf{0}$.

Jacobian Matrix

Almost linear system results will apply to all isolated equilibria of $\overrightarrow{\mathbf{u}}^{\prime}(\boldsymbol{t})=\overrightarrow{\mathbf{f}}(\overrightarrow{\mathbf{u}}(\boldsymbol{t}))$. This is accomplished by expanding f in a Taylor series about each equilibrium point, which implies that the ideas are applicable to different choices of \boldsymbol{A} and \boldsymbol{g}, depending upon which equilibrium point $\overrightarrow{\mathbf{u}}_{0}$ was considered.

Define the Jacobian matrix of $\overrightarrow{\mathbf{f}}$ at equilibrium point $\overrightarrow{\mathbf{u}}_{0}$ by the formula

$$
J=\operatorname{aug}\left(\partial_{1} \overrightarrow{\mathbf{f}}\left(\overrightarrow{\mathrm{u}}_{0}\right), \partial_{2} \overrightarrow{\mathbf{f}}\left(\overrightarrow{\mathrm{u}}_{0}\right)\right)
$$

Taylor's theorem for functions of two variables says that

$$
\overrightarrow{\mathbf{f}}(\overrightarrow{\mathbf{u}})=J\left(\overrightarrow{\mathbf{u}}-\overrightarrow{\mathbf{u}}_{0}\right)+\overrightarrow{\mathbf{g}}(\overrightarrow{\mathbf{u}})
$$

where $\overrightarrow{\mathrm{g}}(\overrightarrow{\mathrm{u}}) /\left\|\overrightarrow{\mathbf{u}}-\overrightarrow{\mathbf{u}}_{0}\right\| \rightarrow \mathbf{0}$ as $\left\|\overrightarrow{\mathbf{u}}-\overrightarrow{\mathbf{u}}_{0}\right\| \rightarrow \mathbf{0}$. Therefore, for $\overrightarrow{\mathrm{f}}$ continuously differentiable, we may always take $\boldsymbol{A}=\boldsymbol{J}$ to obtain from the almost linear system $\overrightarrow{\mathbf{u}}^{\prime}(\boldsymbol{t})=\overrightarrow{\mathrm{f}}(\overrightarrow{\mathbf{u}}(\boldsymbol{t}))$ its linearization $\boldsymbol{y}^{\prime}(\boldsymbol{t})=\boldsymbol{A} \overrightarrow{\mathbf{y}}(\boldsymbol{t})$.

