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Phase-amplitude conversion–I
Given a simple harmonic motion x(t) = c1 cosωt + c2 sinωt, as in Figure 1, define amplitude A and phase
angle α by the formulas

A =

√
c21 + c22, c1 = A cosα, c2 = A sinα.

Then the simple harmonic motion has the phase-amplitude form

x(t) = A cos(ωt− α).(1)

To directly obtain (1) from trigonometry, use the trigonometric identity

cos(a− b) = cos a cos b+ sin a sin b

with a = ωt and b = α. It is known from trigonometry that x(t) has period 2π/ω and phase shift α/ω. A
full period is called a cycle and a half-period a semicycle. The frequency ω/(2π) is the number of complete
cycles per second, or the reciprocal of the period.
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Figure 1. Simple harmonic oscillation x(t) = A cos(ωt− α), showing the period
2π/ω, the phase shift α/ω and the amplitudeA.



Phase-amplitude conversion–II

• The phase shift is the amount of horizontal translation required to shift the cosine curve
cos(ωt − α) so that its graph is atop cos(ωt). To find the phase shift from x(t),
set the argument of the cosine term to zero, then solve for t.

• To solve for α ≥ 0 in the equations c1 = A cosα, c2 = A sinα, first compute
numerically by calculator the radian angle φ = arctan(c2/c1), which is in the
range−π/2 to π/2. Quadrantal angle rules must be applied when c1 = 0, because
calculators return an error code for division by zero. A common error is to set α equal
to φ. Not just the violation of α ≥ 0 results — the error is a fundamental one,
due to trigonometric intricacies, causing us to consider the equations c1 = A cosα,
c2 = A sinα in order to construct the answer for α:

α =


φ (c1, c2) in quadrant I,
φ+ π (c1, c2) in quadrant II,
φ+ π (c1, c2) in quadrant III,
φ+ 2π (c1, c2) in quadrant IV .



Cafe door
Restaurant waiters and waitresses are accustomed to the cafe door, which partially blocks
the view of onlookers, but allows rapid trips to the kitchen – see Figure 2. The door is
equipped with a spring which tries to restore the door to the equilibrium position x = 0,
which is the plane of the door frame. There is a dampener attached, to keep the number of
oscillations low.

Figure 2. A cafe door on three hinges with dampener in the lower hinge. The equilibrium
position is the plane of the door frame.

The top view of the door, Figure 3, shows how the angle x(t) from equilibrium x = 0 is
measured from different door positions.
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Figure 3. Top view of a cafe door, showing the three possible door positions.



Pet door
Designed for dogs and cats, the small door in Figure 4 allows animals to enter and exit the
house freely. A pet door might have a weather seal and a security lock.

Figure 4. A pet door.
The equilibrium position is the plane of the door frame.

The pet door swings freely from hinges along the top edge. One hinge is spring–loaded with
dampener. Like the cafe door, the spring restores the door to the equilibrium position while
the dampener acts to eventually stop the oscillations. However, there is one fundamental
difference: if the spring–dampener system is removed, then the door continues to oscillate!
The cafe door model will not describe the pet door.



Cafe Door Model
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Figure 5. Top view of a cafe door, showing the three possible door positions.
Figure 5 shows that, for modeling purposes, the cafe door can be reduced to a torsional
pendulum with viscous damping. This results in the cafe door equation

Ix′′(t) + cx′(t) + κx(t) = 0.(2)

The removal of the spring (κ = 0) causes the solution x(t) to be monotonic, which is a
reasonable fit to a springless cafe door.



Pet Door Model

Figure 6. A pet door.
The equilibrium position is the plane of the door frame.

For modeling purposes, the pet door can be compressed to a linearized swinging rod of
length L (the door height). The torque I = mL2/3 of the door assembly becomes
important, as well as the linear restoring force kx of the spring and the viscous damping
force cx′ of the dampener. All considered, a suitable model is the pet door equation

I x′′(t) + cx′(t) +

(
k +

mgL

2

)
x(t) = 0.(3)

Derivation of (3) is by equating to zero the algebraic sum of the forces. Removing the
dampener and spring (c = k = 0) gives a harmonic oscillator x′′(t) + ω2x(t) = 0
with ω2 = 0.5mgL/I , which establishes sanity for the modeling effort. Equation (3) is
formally the cafe door equation with an added linearization term 0.5mgLx(t) obtained
from 0.5mgL sinx(t).



Classifying Damped Models
Consider a differential equation

ay′′ + by′ + cy = 0

with constant coefficients a, b, c. It has characteristic equation ar2 + br + c = 0 with
roots r1, r2.

Classification Defining properties
Overdamped Distinct real roots r1 6= r2

Positive discriminant
x = c1e

r1t + c2e
r2t

= exponential × monotonic function
Critically damped Double real root r1 = r2

Zero discriminant
x = c1e

r1t + c2 t e
r1t

= exponential × monotonic function
Underdamped Complex conjugate roots α± i β

Negative discriminant
x = eαt(c1 cosβt+ c2 sinβt)
= exponential × harmonic oscillation


