## Example. Three Possibilities with Symbol $\boldsymbol{k}$

Determine all values of the symbol $\boldsymbol{k}$ such that the system below has one of the Three Possibilities
(1) No solution,
(2) Infinitely many solutions,
(3) A unique solution.

Display all solutions found.

$$
\begin{aligned}
x+k y & =2 \\
(2-k) x+y & =3
\end{aligned}
$$

The solution of this problem involves construction of three frame sequences, the last frame of each resulting in one classification among the Three Possibilities:
(1) No solution, (2) Unique solution, (3) Infinitely many solutions.

The plan, for each of the three possibilities, is to obtain a triangular system by application of swap, multiply and combination rules. The three possibilities are detected by (1) A signal equation " $0=1$," (2) One or more free variables, (3) Zero free variables.

## Shared Frames

The three expected frame sequences share these initial frames:


At this point, we identify the values of $\boldsymbol{k}$ that split off into the three possibilities.

## Analysis of the Frames

$\qquad$

$$
\begin{array}{rrr|r}
\boldsymbol{x}+ & \boldsymbol{k y}= & \mathbf{2}, & \begin{array}{r}
\text { Frame 3. } \\
0+
\end{array} \\
+\boldsymbol{k}-\mathbf{1})^{2} \boldsymbol{y}= & \mathbf{2 k}-\mathbf{1} & \text { Simplify. }
\end{array}
$$

- There will be a signal equation if the second equation of Frame 3 has no variables, but the resulting equation is not " $0=0$." This happens exactly for $\boldsymbol{k}=1$. The resulting signal equation is " $\mathbf{0}=\mathbf{1}$." We conclude that one of the three frame sequences terminates with the no solution case. This frame sequence corresponds to $k=1$.
- Otherwise, $\boldsymbol{k} \neq 1$. For these values of $\boldsymbol{k}$, there are zero free variables, which implies a unique solution.
- A by-product of the analysis is that the infinitely many solutions case never occurs!


## The Conclusion

The three frame sequences reduce to two frame sequences. One sequence gives no solution and the other sequence gives a unique solution.

## The Three Answers

(1) There is no solution only for $\boldsymbol{k}=\mathbf{1}$.
(2) Infinitely many solutions never occur for any value of $\boldsymbol{k}$.
(3) For $\boldsymbol{k} \neq 1$, there is a unique solution

$$
\begin{aligned}
& x=2-k(2 k-1) /(k-1)^{2} \\
& y=(2 k-1) /(k-1)^{2}
\end{aligned}
$$

