\[y' = ky \]

Growth- Decay

\[y = y_0 e^{kx} \]

Solution: \(y = y_0 e^{kx} \)

\(y_0 = \text{an arbitrary constant} \)

\[y(0) \]

\[\frac{du}{dt} = -h(u-u_0) \]

Newton's Cooling

\[u = u_0 + A_0 e^{-ht} \]

Solution: \(u = u_0 + A_0 e^{-ht} \)

Obtained by changing \(y = u-u_0 \)

To get \(y' = -hy \), Then apply \(A \) recipe above.

\[\frac{dp}{dt} = (a-bp)p \]

Verhulst Logistic

\[p(t) = \frac{ap_0}{b + (a-bp_0)e^{-at}} \]

Solution: \(p(t) = \frac{ap_0}{b + (a-bp_0)e^{-at}} \)

Where \(p_0 = p(0) = \text{initial population} \).

Obtained by changing \(\frac{y}{p} = \frac{a}{a-bp} \)

To get \(y' = ay \), Then apply \(A \) recipe above.
1.2 - #1

1. Find a function \(y = f(x) \) satisfying the given differential equation and the prescribed initial condition.

\[
\frac{dy}{dx} = 2x + 1 \quad \text{Given}
\]

\[
y(x) = \int (2x + 1) \, dx
\]

\[
y(x) = x^2 + x + C
\]

\[
y(0) = 0 + 0 + C
\]

\[
0 + 0 + C = 3
\]

\[
C = 3
\]

\[
y(x) = x^2 + x + 3
\]

Check:

Back of Book
Apply the method of quadrature to solve
\[
\begin{aligned}
&y' = 2x + 1 \\
y(0) = 3
\end{aligned}
\]

\[\int y' \, dx = \int (2x + 1) \, dx\]

\[y = x^2 + x + c\]

\[3 = 0^2 + 0 + c\]

\[c = 3\]

\[y = x^2 + x + 3\]

Check:

LHS = \[y'\]

\[= (x^2 + x + 3)\]

\[= 2x + 1\]

\[= \text{RHS}\]

\[y(0) = 0^2 + 0 + 3\]

\[= 3\]

\[y = x^2 + x + 2\]

Given DE

Integrate across both sides on \(x\).

Fund. Thm. of calculus applied; \(c = \text{constant}\)

use \(y = 3\) at \(x = 0\)

Candidate Solution found.

LHS = left hand side

as \(y' = 2x + 1\), RHS = right hand side.

DE verified

Initial condition \(y(0) = 3\)

is verified.

Solution.
PROBLEM 2 pg. 17 #2

Find a function $y = f(x)$ which satisfies the given differential equation $\frac{dy}{dx} = (x-2)^2$ and initial condition $y(2) = 1$.

$y(x) = (x-2)^2$

$y'(x) \, dx = (x-2)^2 \, dx$

$\int y'(x) \, dx = \int (x-2)^2 \, dx$

$y(x) = \frac{(x-2)^3}{3} + C$

$1 = \frac{(2-2)^3 + C}{3}$

$C = 1$

$y(x) = \frac{(x-2)^3}{3} + 1$

Check:

$LHS = y'(x)$

$= \left[\frac{(x-2)^3}{3} + 1 \right]'$

$= (x-2)^2 + 0$

$= RHS$

$LHS = y(2)$

$= \left[\frac{(x-2)^3}{3} + 1 \right]_{x=2}$

$= 0 + 1$

$= RHS$

Checks with initial differential equation

Checks with initial condition $y(2) = 1$.
Find a function \(y = y(x) \) which satisfies the differential equation \(\frac{dy}{dx} = (x-2)^2 \) and initial condition \(y(2) = 1 \).

\[
\begin{align*}
y'(x) &= (x-2)^2 \\
y'(x) \, dx &= (x-2)^2 \, dx \\
\int y'(x) \, dx &= \int (x-2)^2 \, dx \\
y(x) &= \frac{(x-2)^3}{3} + C \\
1 &= \frac{(2-2)^3}{3} + C \\
C &= 1 \\
y(x) &= \frac{(x-2)^3}{3} + 1
\end{align*}
\]

Given

Apply the method of quadrature

\[
\begin{align*}
\text{Use } y(2) = 1 \text{ to find } C
\end{align*}
\]

Candidate solution

Check:

LHS = \(y'(x) \)
\[
\begin{align*}
&= \left[\frac{(x-2)^3}{3} + 1 \right]' \\
&= (x-2)^2 + 0 \\
&= \text{RHS}
\end{align*}
\]

LHS = \(y(2) \)
\[
\begin{align*}
&= \left[\frac{(x-2)^3}{3} + 1 \right] \bigg|_{x=2} \\
&= 0 + 1 \\
&= \text{RHS}
\end{align*}
\]

DE verified

LHS side of IC

verified \(y(2) = 1 \)