Image Compression using SVD and DCT

Math 2270-003 Spring 2012 Yizhou Ye

Image? Matrix?

Matrix?

	1	2	3	4	5	6	7	8	9
40	10	7	10	3	2	2	3	7	
41	10	5	7	3	2	2	3	7	
42	7	5	5	7	2	2	2	4	
43	10	6	5	5	3	24	2	3	
44	7	8	5	5	3	24	2	2	
45	5	5	5	5	3	2	24	2	
46	5	5	5	5	5	3	2	2	
47	5	5	7	10	5	10	2	2	
48	6	7	7	10	5	7	3	24	
49	5	6	7	10	5	5	3	10	
50	5	6	10	10	10	5	10	2	
51	5	7	10	10	10	5	5	3	
52	5	10	10	23	10	5	5	7	
53	12	7	10	10	10	10	5	7	
54	12	10	10	23	10	5	5	7	
55	5	7	10	10	10	7	5	5	
56	12	10	10	7	10	3	10	10	
57	12	10	10	10	23	10	10	10	
58	12	10	10	10	10	10	10	10	

- □ Image File = Header + RGB / GrayScale
- □ Maple / Matlab □ what do they do?

Matlab API

- A = imread(filename, *fmt*) reads a grayscale or color image from the file specified by the string filename.
- The return value A is an array containing the image data. If the file contains a grayscale image, A is an M-by-N array. If the file contains a true-color image, A is an M-by-N-by-3 array.

.jpeg, .jpg

- \square Image == matrix? No.
- □ Approximate way

JPEG – Joint Photographic Experts Group

imread can read any baseline JPEG image as well as JPEG images with some commonly used extensions. For information about support for JPEG 2000 files, see JPEG 2000.

Supported Bitdepths (Bits-per-sample)	Lossy Compression	Lossless Compression	Output Class	Notes		
8-bit	у	у	uint8	Grayscale or RGB		
12-bit	у	у	uint16	Grayscale or RGB		
16-bit	-	у	uint16	Grayscale		

Basically

- □ Read Image []
- □ Matrix 🛛
- SVD / DCT 🛛
- □ done/ compressed

SVD

□ SVD: singular value decomposition

Using the SVD we can write an $n \times n$ invertible matrix A as:

$$A = P\Sigma Q^{T} = (\mathbf{p}_{1}, \mathbf{p}_{2}, \dots, \mathbf{p}_{n}) \begin{pmatrix} \sigma_{1} & 0 & \cdots & 0 \\ 0 & \sigma_{2} & \ddots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & \sigma_{n} \end{pmatrix} \begin{pmatrix} \mathbf{q}_{1}^{T} \\ \mathbf{q}_{2}^{T} \\ \vdots \\ \mathbf{q}_{n}^{T} \end{pmatrix}$$
$$= \mathbf{p}_{1}\sigma_{1}\mathbf{q}_{1}^{T} + \mathbf{p}_{2}\sigma_{2}\mathbf{q}_{2}^{T} + \dots + \mathbf{p}_{n}\sigma_{n}\mathbf{q}_{n}^{T}$$

SVD

Note that A is m*n, U is m*m orthogonal matrix, Σ is an m*n matrix containing singular values of A, and V is an r*r orthogonal matrix. And the singular values of A are:

$$\sigma_1 \ge \sigma_2 \ge \sigma_3 \ge \cdots \ge \sigma_r \ge 0$$

- All these singular values are along the main diagonal of Σ.
- □ We can rewrite the formula in the following way:

SVD

Using the SVD we can write an $n \times n$ invertible matrix A as:

$$A = P\Sigma Q^{T} = (\mathbf{p}_{1}, \mathbf{p}_{2}, \dots, \mathbf{p}_{n}) \begin{pmatrix} \sigma_{1} & 0 & \cdots & 0 \\ 0 & \sigma_{2} & \ddots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & \sigma_{n} \end{pmatrix} \begin{pmatrix} \mathbf{q}_{1}^{T} \\ \mathbf{q}_{2}^{T} \\ \vdots \\ \mathbf{q}_{n}^{T} \end{pmatrix}$$
$$= \mathbf{p}_{1}\sigma_{1}\mathbf{q}_{1}^{T} + \mathbf{p}_{2}\sigma_{2}\mathbf{q}_{2}^{T} + \dots + \mathbf{p}_{n}\sigma_{n}\mathbf{q}_{n}^{T}$$

Approximation

□ <u>Approximation</u> of SVD is the most crucial part:

 $A = U\Sigma V^{T}$ $A = \sum \sigma_{i} \overrightarrow{u_{1}} \ \overrightarrow{v_{1}}^{T}$ $A = \sum \sigma_{1} \overrightarrow{u_{1}} \ \overrightarrow{v_{1}}^{T} + \sigma_{2} \overrightarrow{u_{2}} \ \overrightarrow{v_{2}}^{T} + \cdots$

We know that the terms {Ai} are ordered from greatest to lowest, thus we can approximate A by varying the number of items. In other words, we can change the rank of A to make the approximation (of course, larger number gives us a more accurate approximation).

Example:

One term

Three terms

Examples:

10 terms

50 terms

Examples:

100 terms

300 terms

Examples:

300 terms (rank)

Original image

□ Compression Ratio:

- □ Not exactly (1+m+n)/(m*n) for a m*n A
- This plot is draw by matlab: Image is more complex than we thought
- □ MatLab Read original size: 24206
 - Just the RGB / GrayScaler

of terms

Cost of items

Cost of one term

index of terms

DCT

Discrete Cosine Transformation", which works by separate image into parts of different frequencies.

A "lossy" compression, because during a step called "quantization", where parts of compression occur, the less important frequencies will be discarded. Later in the "recombine parts" step, which is known as decompression step, some little distortion will occur, but it will be somehow adjusted in further steps.

DCT Equations

$$D(i,j) = \frac{1}{\sqrt{2N}} C(i)C(j) \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} p(x,y) \cos\left[\frac{(2x+1)i\pi}{2N}\right] \cos\left[\frac{(2y+1)j\pi}{2N}\right] = 1$$

$$C(u) = \begin{cases} \frac{1}{\sqrt{2}} & \text{if } u = 0\\ 1 & \text{if } u > 0 \end{cases}$$
2

i, j are indices of the ij-th entry of the image matrix, p(x, y) is the matrix element in that entry, and N is the size of the block we are working on.

8 * 8 blocks

For a standard procedure where N=8, the equation can be also written as the following form:

$$D(i,j) = \frac{1}{4}C(i)C(j)\sum_{x=0}^{7}\sum_{y=0}^{7}p(x,y)\cos\left[\frac{(2x+1)i\pi}{16}\right]\cos\left[\frac{(2y+1)j\pi}{16}\right] \qquad 3$$

T matrix

For an 8x8 block it results in this matrix:

	.3536	.3536	. <mark>3536</mark>	.3536	.3536	.3536	. <mark>3536</mark>	.3536
	. <mark>490</mark> 4	.4157	.2778	.0975	0975	<mark>2778</mark>	4157	<mark>4</mark> 904
	. <mark>461</mark> 9	.1913	- <mark>.1913</mark>	<mark>461</mark> 9	<mark>461</mark> 9	<mark>1913</mark>	. <mark>1913</mark>	.4619
T _	.4157	- <mark>.0975</mark>	<mark>4904</mark>	2778	.2778	. <mark>490</mark> 4	.0975	4157
1 -	.3536	<mark>3536</mark>	<mark>3536</mark>	. <mark>3536</mark>	.3536	<mark>3536</mark>	- <mark>.3536</mark>	.3536
	.2778	<mark>490</mark> 4	. <mark>0975</mark>	.4157	4157	0975	.4904	<mark>2778</mark>
	. <mark>191</mark> 3	<mark>4619</mark>	. <mark>4619</mark>	<mark>1913</mark>	1913	. <mark>4619</mark>	<mark>4619</mark>	.1913
	.0975	2778	.4157	<mark>4904</mark>	. <mark>4904</mark>	<mark>41</mark> 57	. <mark>2778</mark>	<mark>0975</mark>

Procedure

- Break the image matrix into 8*8 pixel blocks
- Applying DCT equations to each block in level order
- Each block is compressed through quantization
- Basically done.
- When desired, it can be decompressed, by Inverse Discrete Cosine Transformation.

Example of DCT

	154	123	123	123	123	123	123	136
	192	180	136	154	154	154	136	110
	254	198	154	154	180	154	123	123
Original -	239	180	136	180	180	166	123	123
Original =	180	154	136	167	166	149	136	136
	128	136	123	136	154	180	198	154
	123	105	110	149	136	136	180	166
	110	136	123	123	123	136	154	136

-128 for each entry

Since pixels are valued from -128 to 127

Apply D = TMT'

D =	162.3	40.6	20.0	72.3	30.3	12.5	-19.7	-11.5	
	30.5	108.4	10.5	32.3	27.7	-15.5	18.4	-2.0	
	-94.1	-60.1	12.3	-43.4	-31.3	6.1	-3.3	7.1	
	-38.6	-83.4	-5.4	-22.2	-13.5	15.5	-1.3	3.5	
	-31.3	17.9	-5.5	-12.4	14.3	-6.0	11.5	-6.0	
	-0.9	-11.8	12.8	0.2	28.1	12.6	8.4	2.9	
	4.6	-2.4	12.2	6.6	-18.7	-12.8	7.7	12.0	
	-10.0	11.2	7.8	-16.3	21.5	0.0	5.9	10.7	

T matrix is from the previous equations.

Human eye fact

- The human eye is fairly good at seeing small differences in brightness over a relatively large area
- But not so good at distinguishing the exact strength of a high frequency (rapidly varying) brightness variation.

We know the fact, then

- This fact allows one to reduce the amount of information required by ignoring the high frequency components. This is done by simply dividing each component in the frequency domain by a constant for that component, and then rounding to the nearest integer.
- This is the main lossy operation in the whole process. As a result of this, it is typically the case that many of the higher frequency components are rounded to zero, and many of the rest become small positive or negative numbers.

Quantization Matrix

Quantization

										_
Q ₅₀ =		16	11	10	16	24	40	51	61	
		12	12	14	19	26	58	60	55	
		14	13	16	24	40	57	69	56	
	6	14	17	22	29	51	87	80	62	
	1	18	22	37	56	68	109	103	77	
		24	35	55	64	81	104	113	92	
		49	64	78	87	103	121	120	101	
	1	72	92	95	98	112	100	103	99	
										_

quantization level = 50, a common choice of Q matrix

Round Equation

$$C_{i,j} = round\left(\frac{D_{i,j}}{Q_{i,j}}\right)$$

Typically, upper left corner. Thus we apply zig-zag order:

Zip-Zag Ordering

Figure 1

Original VS. Decompressed

$$R_{i,j} = Q_{i,j} \times C_{i,j}$$

	154	123	123	123	123	123	123	136		Г	1/19	134	110	116	121	126	127	128	51.0
$al = \begin{bmatrix} 192 \\ 254 \\ 239 \\ 180 \end{bmatrix}$	192	180	136	<u>154</u>	154	154	136	110			204	168	140	144	155	150	135	125	
	198	154	154	180	154	123	123			253	195	155	166	183	165	131	111		
	239	180	136	180	180	166	123	123	Decompressed =		245	185	148	166	184	160	124	107	
	180	154	136	167	166	149	136	136			188	149	132	155	172	159	141	136	
	128	136	123	136	154	180	198	<u>154</u>			132	123	125	143	160	166	168	171	
	123	105	110	149	136	136	180	166			109	119	126	128	139	158	168	166	
	110	136	123	123	123	136	154	136			111	127	127	114	118	141	147	135	100

Original =

Examples

More Examples

- Image can be expressed by matrix somehow, but image is much more than that.
- SVD and DCT are techniques to compress image, but both of them are "lossy".
- □ Still many other ways to compress:

