Vector Spaces and Subspaces

- Vector Space \boldsymbol{V}
- Subspaces \boldsymbol{S} of Vector Space \boldsymbol{V}
- The Subspace Criterion
- Subspaces are Working Sets
- The Kernel Theorem
- Not a Subspace Theorem
- Independence and Dependence in Abstract spaces
- Independence test for two vectors $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}$. An Illustration.
- Geometry and Independence
- Rank Test and Determinant Test for Fixed Vectors
- Sampling Test and Wronskian Test for Functions.
- Independence of Atoms

Vector Space V

It is a data set V plus a toolkit of eight (8) algebraic properties. The data set consists of packages of data items, called vectors, denoted \vec{X}, \vec{Y} below.

Closure The operations $\vec{X}+\vec{Y}$ and $k \vec{X}$ are defined and result in a new vector which is also in the set V.
Addition

$$
\vec{X}+\vec{Y}_{\rightarrow}=\vec{Y}_{\rightarrow}+\vec{X}
$$

commutative
$\vec{X}+(\vec{Y}+\vec{Z})=(\vec{Y}+\vec{X})+\vec{Z}$
associative
Vector $\overrightarrow{0}$ is defined and $\overrightarrow{0}+\vec{X}=\vec{X}$
Vector $-\vec{X}$ is defined and $\vec{X}+(-\vec{X})=\overrightarrow{0}$
Scalar
$k(\vec{X}+\vec{Y})=k \vec{X}+k \vec{Y}$
multiply $\quad\left(k_{1}+k_{2}\right) \vec{X}=k_{1} \vec{X}+k_{2} \vec{X}$
$k_{1}\left(k_{2} \vec{X}\right)=\left(k_{1} k_{2}\right) \vec{X}$
$1 \vec{X}=\vec{X}$

Figure 1. A Vector Space is a data set, operations \ddagger and \odot, and the 8 -property toolkit.

Definition of Subspace

A subspace \boldsymbol{S} of a vector space \boldsymbol{V} is a nonvoid subset of \boldsymbol{V} which under the operations + and \cdot of \boldsymbol{V} forms a vector space in its own right.

Subspace Criterion

Let \boldsymbol{S} be a subset of \boldsymbol{V} such that

1. Vector $\mathbf{0}$ is in \boldsymbol{S}.
2. If \vec{X} and $\overrightarrow{\boldsymbol{Y}}$ are in S, then $\overrightarrow{\boldsymbol{X}}+\overrightarrow{\boldsymbol{Y}}$ is in \boldsymbol{S}.
3. If \vec{X} is in S, then $\boldsymbol{c} \overrightarrow{\boldsymbol{X}}$ is in \boldsymbol{S}.

Then \boldsymbol{S} is a subspace of \boldsymbol{V}.
Items 2,3 can be summarized as all linear combinations of vectors in \boldsymbol{S} are again in \boldsymbol{S}. In proofs using the criterion, items 2 and 3 may be replaced by

$$
c_{1} \vec{X}+c_{2} \vec{Y} \text { is in } S
$$

Subspaces are Working Sets

We call a subspace \boldsymbol{S} of a vector space \boldsymbol{V} a working set, because the purpose of identifying a subspace is to shrink the original data set \boldsymbol{V} into a smaller data set S, customized for the application under study.

A Key Example. Let \boldsymbol{V} be ordinary space \boldsymbol{R}^{3} and let \boldsymbol{S} be the plane of action of a planar kinematics experiment. The data set for the experiment is all 3 -vectors \mathbf{v} in \boldsymbol{V} collected by a data recorder. Detected and recorded is the 3D position of a particle which has been constrained to a plane. The plane of action S is computed as a homogeneous equation like $2 \mathrm{x}+3 \mathrm{y}+1000 \mathrm{z}=0$, the equation of a plane, from the recorded data set in \boldsymbol{V}. After least squares is applied to find the optimal equation for \boldsymbol{S}, then \boldsymbol{S} replaces the larger data set \boldsymbol{V}. The customized smaller set \boldsymbol{S} is the working set for the kinematics problem.

The Kernel Theorem

Theorem 1 (Kernel Theorem)

Let \boldsymbol{V} be one of the vector spaces \boldsymbol{R}^{n} and let \boldsymbol{A} be an $\boldsymbol{m} \times \boldsymbol{n}$ matrix. Define a smaller set S of data items in \boldsymbol{V} by the kernel equation

$$
S=\{\mathrm{x}: \mathrm{x} \text { in } V, \quad A \mathrm{x}=0\}
$$

Then \boldsymbol{S} is a subspace of \boldsymbol{V}.
In particular, operations of addition and scalar multiplication applied to data items in S give answers back in S, and the 8-property toolkit applies to data items in \boldsymbol{S}.
Proof: Zero is in \boldsymbol{V} because $\boldsymbol{A 0}=\mathbf{0}$ for any matrix \boldsymbol{A}. To verify the subspace criterion, we verify that $\mathrm{z}=c_{1} \mathrm{x}+c_{2} \mathrm{y}$ for x and y in \boldsymbol{V} also belongs to \boldsymbol{V}. The details:

$$
\begin{aligned}
A \mathrm{z} & =A\left(c_{1} \mathrm{x}+c_{2} \mathrm{y}\right) & & \\
& =A\left(c_{1} \mathrm{x}\right)+A\left(c_{2} \mathrm{y}\right) & & \\
& =c_{1} A \mathrm{x}+c_{2} A \mathrm{y} & & \\
& =c_{1} 0+c_{2} 0 & & \text { Because } A \mathrm{x}=A \mathrm{y}=0, \text { due to } \mathrm{x}, \mathrm{y} \text { in } V . \\
& =0 & & \text { Therefore, } A \mathrm{z}=0, \text { and } \mathrm{z} \text { is in } V .
\end{aligned}
$$

The proof is complete.

Not a Subspace Theorem

Theorem 2 (Testing S not a Subspace)

Let \boldsymbol{V} be an abstract vector space and assume \boldsymbol{S} is a subset of \boldsymbol{V}. Then \boldsymbol{S} is not a subspace of \boldsymbol{V} provided one of the following holds.
(1) The vector 0 is not in S.
(2) Some x and -x are not both in S.
(3) Vector $\mathrm{x}+\mathrm{y}$ is not in S for some x and y in S.

Proof: The theorem is justified from the Subspace Criterion.

1. The criterion requires 0 is in S.
2. The criterion demands $\boldsymbol{c x}$ is in \boldsymbol{S} for all scalars \boldsymbol{c} and all vectors x in \boldsymbol{S}.
3. According to the subspace criterion, the sum of two vectors in S must be in S.

Definition of Independence and Dependence

A list of vectors $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\boldsymbol{k}}$ in a vector space \boldsymbol{V} are said to be independent provided every linear combination of these vectors is uniquely represented. Dependent means not independent.
Unique representation
An equation

$$
a_{1} \mathbf{v}_{1}+\cdots+a_{k} \mathbf{v}_{k}=b_{1} \mathbf{v}_{1}+\cdots+b_{k} \mathbf{v}_{k}
$$

implies matching coefficients: $a_{1}=b_{1}, \ldots, a_{k}=b_{k}$.

Independence Test

Form the system in unknowns c_{1}, \ldots, c_{k}

$$
c_{1} \mathbf{v}_{1}+\cdots+c_{k} \mathbf{v}_{k}=0
$$

Solve for the unknowns [how to do this depends on \boldsymbol{V}]. Then the vectors are independent if and only if the unique solution is $c_{1}=c_{2}=\cdots=c_{k}=0$.

Independence test for two vectors $\mathrm{v}_{\mathbf{1}}, \mathrm{v}_{\mathbf{2}}$

In an abstract vector space \boldsymbol{V}, form the equation

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}=0
$$

Solve this equation for $\boldsymbol{c}_{1}, \boldsymbol{c}_{2}$.
Then $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}$ are independent in V if and only if the system has unique solution $c_{1}=c_{2}=0$.

Geometry and Independence

- One fixed vector is independent if and only if it is nonzero.
- Two fixed vectors are independent if and only if they form the edges of a parallelogram of positive area.
- Three fixed vectors are independent if and only if they are the edges of a parallelepiped of positive volume.

In an abstract vector space \boldsymbol{V}, two vectors [two data packages] are independent if and only if one is not a scalar multiple of the other.

Illustration

Vectors $\mathbf{v}_{\mathbf{1}}=\boldsymbol{\operatorname { c o s }} \boldsymbol{x}$ and $\mathbf{v}_{\mathbf{2}}=\sin \boldsymbol{x}$ are two data packages [graphs] in the vector space \boldsymbol{V} of continuous functions. They are independent because one graph is not a scalar multiple of the other graph.

An Illustration of the Independence Test

Two column vectors are tested for independence by forming the system of equations $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}=0$, e.g,

$$
c_{1}\binom{-1}{1}+c_{2}\binom{2}{1}=\binom{0}{0}
$$

This is a homogeneous system $\boldsymbol{A c}=\mathbf{0}$ with

$$
A=\left(\begin{array}{rr}
-1 & 2 \\
1 & 1
\end{array}\right), \quad \mathrm{c}=\binom{c_{1}}{c_{2}}
$$

The system $\boldsymbol{A c}=0$ can be solved for c by frame sequence methods. Because $\operatorname{rref}(\boldsymbol{A})=I$, then $c_{1}=c_{2}=0$, which verifies independence.
If the system $\boldsymbol{A c}=0$ is square, then $\operatorname{det}(A) \neq 0$ applies to test independence.
There is no chance to use determinants when the system is not square, e.g., consider the homogeneous system

$$
c_{1}\left(\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

It has vector-matrix form $\boldsymbol{A c}=0$ with $\mathbf{3} \times 2$ matrix \boldsymbol{A}, for which $\operatorname{det}(\boldsymbol{A})$ is undefined.

Rank Test

In the vector space \boldsymbol{R}^{n}, the independence test leads to a system of \boldsymbol{n} linear homogeneous equations in \boldsymbol{k} variables $\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{\boldsymbol{k}}$. The test requires solving a matrix equation $\boldsymbol{A c}=\mathbf{0}$. The signal for independence is zero free variables, or nullity zero, or equivalently, maximal rank. To justify the various statements, we use the relation $\operatorname{nullity}(\boldsymbol{A})+\operatorname{rank}(\boldsymbol{A})=\boldsymbol{k}$, where \boldsymbol{k} is the column dimension of \boldsymbol{A}.

Theorem 3 (Rank-Nullity Test)

Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ be \boldsymbol{k} column vectors in \boldsymbol{R}^{n} and let \boldsymbol{A} be the augmented matrix of these vectors. The vectors are independent if $\operatorname{rank}(A)=k$ and dependent if $\operatorname{rank}(A)<\boldsymbol{k}$. The conditions are equivalent to nullity $(\boldsymbol{A})=0$ and nullity $(A)>0$, respectively.

Determinant Test

In the unusual case when the system arising in the independence test can be expressed as $\boldsymbol{A c}=\mathbf{0}$ and \boldsymbol{A} is square, then $\operatorname{det}(\boldsymbol{A})=\mathbf{0}$ detects dependence, and $\operatorname{det}(\boldsymbol{A}) \neq \mathbf{0}$ detects independence. The reasoning is based upon the adjugate formula $\boldsymbol{A}^{-1}=$ $\operatorname{adj}(A) / \operatorname{det}(A)$, valid exactly when $\operatorname{det}(A) \neq 0$.

Theorem 4 (Determinant Test)

Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ be \boldsymbol{n} column vectors in \boldsymbol{R}^{n} and let \boldsymbol{A} be the augmented matrix of these vectors. The vectors are independent if $\operatorname{det}(A) \neq 0$ and dependent if $\operatorname{det}(A)=0$.

Sampling Test

Let functions f_{1}, \ldots, f_{n} be given and let $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}$ be distinct \boldsymbol{x}-sample values. Define

$$
A=\left(\begin{array}{cccc}
f_{1}\left(x_{1}\right) & f_{2}\left(x_{1}\right) & \cdots & f_{n}\left(x_{1}\right) \\
f_{1}\left(x_{2}\right) & f_{2}\left(x_{2}\right) & \cdots & f_{n}\left(x_{2}\right) \\
\vdots & \vdots & \cdots & \vdots \\
f_{1}\left(x_{n}\right) & f_{2}\left(x_{n}\right) & \cdots & f_{n}\left(x_{n}\right)
\end{array}\right) .
$$

Then $\operatorname{det}(\boldsymbol{A}) \neq 0$ implies f_{1}, \ldots, f_{n} are independent functions.

Proof

We'll do the proof for $n=2$. Details are similar for general n. Assume $c_{1} f_{1}+c_{2} f_{2}=0$. Then for all x, $c_{1} f_{1}(x)+c_{2} f_{2}(x)=0$. Choose $x=x_{1}$ and $x=x_{2}$ in this relation to get $A c=0$, where c has components c_{1}, c_{2}. If $\operatorname{det}(A) \neq 0$, then A^{-1} exists, and this in turn implies $\mathrm{c}=\boldsymbol{A}^{-1} A \mathrm{c}=0$. We conclude f_{1}, f_{2} are independent.

Wronskian Test

Let functions f_{1}, \ldots, f_{n} be given and let \boldsymbol{x}_{0} be a given point. Define

$$
W=\left(\begin{array}{llll}
f_{1}\left(x_{0}\right) & f_{2}\left(x_{0}\right) & \cdots & f_{n}\left(x_{0}\right) \\
f_{1}^{\prime}\left(x_{0}\right) & f_{2}^{\prime}\left(x_{0}\right) & \cdots & f_{n}^{\prime}\left(x_{0}\right) \\
\vdots & \vdots & \cdots & \vdots \\
f_{1}^{(n-1)}\left(x_{0}\right) & f_{2}^{(n-1)}\left(x_{0}\right) & \cdots & f_{n}^{(n-1)}\left(x_{0}\right)
\end{array}\right)
$$

Then $\operatorname{det}(\boldsymbol{W}) \neq 0$ implies f_{1}, \ldots, f_{n} are independent functions. The matrix \boldsymbol{W} is called the Wronskian Matrix of f_{1}, \ldots, f_{n} and $\operatorname{det}(\boldsymbol{W})$ is called the Wronskian determinant.

Proof

We'll do the proof for $n=2$. Details are similar for general n. Assume $c_{1} f_{1}+c_{2} f_{2}=0$. Then for all x, $c_{1} f_{1}(x)+c_{2} f_{2}(x)=0$ and $c_{1} f_{1}^{\prime}(x)+c_{2} f_{2}^{\prime}(x)=0$. Choose $x=x_{0}$ in this relation to get $W c=0$, where c has components $\boldsymbol{c}_{\mathbf{1}}, \boldsymbol{c}_{2}$. If $\operatorname{det}(\boldsymbol{W}) \neq 0$, then \boldsymbol{W}^{-1} exists, and this in turn implies $\mathrm{c}=\boldsymbol{W}^{-1} \boldsymbol{W} \mathbf{c}=0$. We conclude f_{1}, f_{2} are independent.

Atoms

\qquad
Definition. A base atom is one of the functions
1, $\quad e^{a x}, \quad \cos b x, \quad \sin b x, \quad e^{a x} \cos b x, \quad e^{a x} \sin b x$
where $\boldsymbol{b}>0$. Define an atom for integers $\boldsymbol{n} \geq 0$ by the formula

$$
\text { atom }=x^{n}(\text { base atom })
$$

The powers $1, \boldsymbol{x}, \boldsymbol{x}^{2}, \ldots$ are atoms (multiply base atom 1 by \boldsymbol{x}^{n}). Multiples of these powers by $\cos \boldsymbol{b} \boldsymbol{x}, \sin \boldsymbol{b} \boldsymbol{x}$ are also atoms. Finally, multiplying all these atoms by $\boldsymbol{e}^{a \boldsymbol{x}}$ expands and completes the list of atoms.

Alternatively, an atom is a function with coefficient 1 obtained as the real or imaginary part of the complex expression

$$
x^{n} e^{a x}(\cos b x+i \sin b x)
$$

Illustration

We show the powers $\mathbf{1}, \boldsymbol{x}, \boldsymbol{x}^{2}, \boldsymbol{x}^{\mathbf{3}}$ are independent atoms by applying the Wronskian Test:

$$
W=\left(\begin{array}{rrrr}
1 & x_{0} & x_{0}^{2} & x_{0}^{3} \\
0 & 1 & 2 x_{0} & 3 x_{0}^{2} \\
0 & 0 & 2 & 6 x_{0} \\
0 & 0 & 0 & 6
\end{array}\right)
$$

Then $\operatorname{det}(W)=12 \neq 0$ implies the functions $1, x, x^{2}, x^{3}$ are linearly independent.

Subsets of Independent Sets are Independent

Suppose $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}$ make an independent set and consider the subset $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}$. If

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}=0
$$

then also

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}=0
$$

where $c_{3}=0$. Independence of the larger set implies $c_{1}=c_{2}=c_{3}=0$, in particular, $c_{1}=c_{2}=0$, and then $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}$ are indpendent.

Theorem 5 (Subsets and Independence)

- A non-void subset of an independent set is also independent.
- Non-void subsets of dependent sets can be independent or dependent.

Atoms and Independence

Theorem 6 (Independence of Atoms)

Any list of distinct atoms is linearly independent.

Unique Representation

The theorem is used to extract equations from relations involving atoms. For instance:

$$
\left(c_{1}-c_{2}\right) \cos x+\left(c_{1}+c_{3}\right) \sin x+c_{1}+c_{2}=2 \cos x+5
$$

implies

$$
\begin{aligned}
& c_{1}-c_{2}=2 \\
& c_{1}+c_{3}=0 \\
& c_{1}+c_{2}=5
\end{aligned}
$$

Atoms and Differential Equations

It is known that solutions of linear constant coefficient differential equations of order \boldsymbol{n} and also systems of linear differential equations with constant coefficients have a general solution which is a linear combination of atoms.

- The harmonic oscillator $\boldsymbol{y}^{\prime \prime}+b^{2} \boldsymbol{y}=0$ has general solution $\boldsymbol{y}(\boldsymbol{x})=\boldsymbol{c}_{1} \cos \boldsymbol{b} \boldsymbol{x}+$ $\boldsymbol{c}_{2} \sin \boldsymbol{b} \boldsymbol{x}$. This is a linear combination of the two atoms $\cos \boldsymbol{b} \boldsymbol{x}, \sin \boldsymbol{b} \boldsymbol{x}$.
- The third order equation $\boldsymbol{y}^{\prime \prime \prime}+\boldsymbol{y}^{\prime}=0$ has general solution $\boldsymbol{y}(\boldsymbol{x})=\boldsymbol{c}_{1} \cos \boldsymbol{x}+$ $\boldsymbol{c}_{2} \sin \boldsymbol{x}+\boldsymbol{c}_{3}$. The solution is a linear combination of the independent atoms $\cos \boldsymbol{x}$, $\sin x, 1$.
- The linear dynamical system $\boldsymbol{x}^{\prime}(\boldsymbol{t})=\boldsymbol{y}(\boldsymbol{t}), \boldsymbol{y}^{\prime}(\boldsymbol{t})=-\boldsymbol{x}(\boldsymbol{t})$ has general solution $\boldsymbol{x}(t)=c_{1} \cos t+c_{2} \sin t, y(t)=-c_{1} \sin t+c_{2} \cos t$, each of which is a linear combination of the independent atoms $\cos t, \sin t$.

