Basis, Dimension, Kernel, Image

- Definitions: Pivot, Basis, Rank and Nullity
- Main Results: Dimension, Pivot Theorem
- Main Results: Rank-Nullity, Row Rank, Pivot Method
- Definitions: Kernel, Image, rowspace, colspace
- How to Compute: Nullspace, Rowspace, Colspace
- Dimension, Kernel and Image
- Testing Bases for Equivalence
- Equivalent Bases: Computer Illustration
- A False Test for Equivalent Bases

Definitions: Pivot and Basis

Pivot of $\boldsymbol{A} \quad$ A column in $\operatorname{rref}(\boldsymbol{A})$ which contains a leading one has a corresponding column in \boldsymbol{A}, called a pivot column of \boldsymbol{A}.
Basis of \boldsymbol{V} It is an independent set $\mathbf{v}_{1}, \ldots, \mathbf{v}_{\boldsymbol{k}}$ from data set \boldsymbol{V} whose linear combinations generate all data items in \boldsymbol{V}. .

Definitions: Rank and Nullity

$\operatorname{rank}(\boldsymbol{A}) \quad$ The number of leading ones $\operatorname{in} \operatorname{rref}(\boldsymbol{A})$
nullity (\boldsymbol{A}) The number of columns of \boldsymbol{A} minus $\operatorname{rank}(\boldsymbol{A})$

Main Results: Dimension, Pivot Theorem

Theorem 1 (Dimension)
If a vector space \boldsymbol{V} has a basis $\mathbf{v}_{1}, \ldots, \mathbf{v}_{\boldsymbol{p}}$ and also a basis $\mathbf{u}_{1}, \ldots, \mathbf{u}_{q}$, then $\boldsymbol{p}=\boldsymbol{q}$. The dimension of \boldsymbol{V} is this unique number \boldsymbol{p}.

Theorem 2 (The Pivot Theorem)

- The pivot columns of a matrix \boldsymbol{A} are linearly independent.
- A non-pivot column of \boldsymbol{A} is a linear combination of the pivot columns of \boldsymbol{A}.

The proofs can be found in web documents and also in the textbook by E \& P. Selfcontained proofs of the statements of the pivot theorem appear in these slides.

Lemma 1 Let B be invertible and $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ independent. Then $B \mathbf{v}_{1}, \ldots, B \mathbf{v}_{p}$ are independent.

Proof of Independence of the Pivot Columns

Consider the fundamental frame sequence identity $\operatorname{rref}(\boldsymbol{A})=\boldsymbol{E A}$ where $\boldsymbol{E}=$ $\boldsymbol{E}_{k} \cdots \boldsymbol{E}_{2} \boldsymbol{E}_{1}$ is a product of elementary matrices. Let $\boldsymbol{B}=\boldsymbol{E}^{-1}$. Then

$$
\operatorname{col}(\operatorname{rref}(A), j)=E \operatorname{col}(A, j)
$$

implies that a pivot column \boldsymbol{j} of \boldsymbol{A} satisfies

$$
\operatorname{col}(A, j)=B \operatorname{col}(I, j)
$$

Because the columns of \boldsymbol{I} are independent, then also the pivot columns of \boldsymbol{A} are independent, by the Lemma.

Proof of Non-Pivot Column Dependence

Using matrix \boldsymbol{B} from the previous proof, $\overrightarrow{\mathbf{u}}=\boldsymbol{B} \overrightarrow{\mathbf{v}}$ holds for a non-pivot column $\overrightarrow{\mathbf{u}}$ of \boldsymbol{A} and its corresponding non-pivot column $\overrightarrow{\mathrm{v}}$ in $\boldsymbol{C}=\operatorname{rref}(\boldsymbol{A})$. Because each nonzero row of \boldsymbol{C} has a leading one, if a component $\boldsymbol{v}_{\boldsymbol{i}} \neq \mathbf{0}$, then row \boldsymbol{i} of \boldsymbol{C} has a leading one in column $\boldsymbol{j}_{i}<\boldsymbol{i}$. Then $\operatorname{col}\left(\boldsymbol{C}, \boldsymbol{j}_{\boldsymbol{i}}\right)$ is a column of the identity \boldsymbol{I} and

$$
\overrightarrow{\mathrm{v}}=\sum_{v_{i} \neq 0} v_{i} \operatorname{col}\left(C, j_{i}\right)
$$

Multiply the preceding display by \boldsymbol{B} to give

$$
\begin{aligned}
\overrightarrow{\mathbf{u}} & =B \overrightarrow{\mathbf{v}} \\
& =\sum_{v_{i} \neq 0} \boldsymbol{v}_{i} B \operatorname{col}\left(C, j_{i}\right) \\
& =\sum_{v_{i} \neq 0} v_{i} \operatorname{col}\left(A, j_{i}\right)
\end{aligned}
$$

Then $\overrightarrow{\mathbf{u}}$ is a linear combination of pivot columns of \boldsymbol{A}.

Main Results: Rank-Nullity, Row Rank, Pivot Method

Theorem 3 (Rank-Nullity Equation)

$\operatorname{rank}(\boldsymbol{A})+\operatorname{nullity}(\boldsymbol{A})=$ column dimension of \boldsymbol{A}

Theorem 4 (Row Rank Equals Column Rank)

The number of independent rows of a matrix \boldsymbol{A} equals the number of independent columns of \boldsymbol{A}. Equivalently, $\operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right)$.

Theorem 5 (Pivot Method)

Let \boldsymbol{A} be the augmented matrix of $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\boldsymbol{k}}$. Let the leading ones in $\operatorname{rref}(\boldsymbol{A})$ occur in columns $i_{1}, \ldots, \boldsymbol{i}_{p}$. Then a largest independent subset of the \boldsymbol{k} vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ is the set

$$
\mathbf{v}_{i_{1}}, \mathbf{v}_{i_{2}}, \ldots, \mathbf{v}_{i_{p}} .
$$

Proof that $\operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right)$

Let S denote the set of all linear combinations of the rows of \boldsymbol{A}. Then \boldsymbol{S} is a subspace, known as the row space of \boldsymbol{A}. A frame sequence from \boldsymbol{A} to $\operatorname{rref}(\boldsymbol{A})$ consists of combination, swap and multiply operations on the rows of \boldsymbol{A}. Therefore, each nonzero row of $\operatorname{rref}(\boldsymbol{A})$ is a linear combination of the rows of \boldsymbol{A}. Because these rows are independent and span S, then they are a basis for S. The size of the basis is $\operatorname{rank}(A)$.

The pivot theorem applied to \boldsymbol{A}^{T} implies that each vector in S is a linear combination of the pivot columns of \boldsymbol{A}^{T}. Because the pivot columns of \boldsymbol{A}^{T} are independent and span \boldsymbol{S}, then they are a basis for S. The size of the basis is $\operatorname{rank}\left(A^{T}\right)$.

The two competing bases for S have sizes $\operatorname{rank}(A)$ and $\operatorname{rank}\left(A^{T}\right)$, respectively. But the size of a basis is unique, called the dimension of the subspace \boldsymbol{S}, hence the equality

$$
\operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right)
$$

Definitions: Kernel, Image, rowspace, colspace \qquad
$\operatorname{kernel}(A)=\operatorname{nullspace}(A)=\{\mathrm{x}: A \mathrm{x}=0\}$.
$\operatorname{Image}(A)=\operatorname{colspace}(A)=\{y: y=A x$ for some $x\}$.
$\operatorname{rowspace}(A)=\operatorname{colspace}\left(A^{T}\right)=\left\{\mathrm{w}: \mathrm{w}=A^{T} \mathrm{y}\right.$ for some y$\}$.
How to Compute Nullspace, Rowspace and Colspace \qquad
Null Space. Compute $\operatorname{rref}(A)$. Write out the general solution x to $\boldsymbol{A x}=0$, where the free variables are assigned parameter names t_{1}, \ldots, t_{k}. Report the basis for nullspace (A) as the list $\partial_{t_{1}} \mathbf{x}, \ldots, \partial_{t_{k}} \mathbf{x}$.
Column Space. Compute $\operatorname{rref}(\boldsymbol{A})$. Identify the pivot columns $\boldsymbol{i}_{1}, \ldots, \boldsymbol{i}_{k}$. Report the basis for colspace (\boldsymbol{A}) as the list of columns $\boldsymbol{i}_{1}, \ldots, \boldsymbol{i}_{k}$ of \boldsymbol{A}.
Row Space. Compute $\operatorname{rref}\left(\boldsymbol{A}^{T}\right)$. Identify the pivot columns $\boldsymbol{j}_{1}, \ldots, \boldsymbol{j}_{\ell}$ of \boldsymbol{A}^{T}. Report the basis for $\operatorname{rowspace}(\boldsymbol{A})$ as the list of rows $\boldsymbol{j}_{1}, \ldots, \boldsymbol{j}_{\ell}$ of \boldsymbol{A}.
Alternatively, compute $\operatorname{rref}(\boldsymbol{A})$, then $\operatorname{rowspace}(\boldsymbol{A})$ has a different basis consisting of the list of nonzero rows of $\operatorname{rref}(A)$.

Dimension, Kernel and Image
Symbol $\operatorname{dim}(\boldsymbol{V})$ equals the number of elements in a basis for \boldsymbol{V}.
Theorem 6 (Dimension Identities)
(a) $\operatorname{dim}(\operatorname{nullspace}(A))=\operatorname{dim}(\operatorname{kernel}(A))=\operatorname{nullity}(A)$
(b) $\operatorname{dim}(\operatorname{colspace}(A))=\operatorname{dim}(\operatorname{Image}(A))=\operatorname{rank}(A)$
(c) $\operatorname{dim}(\operatorname{rowspace}(A))=\operatorname{rank}(A)$
(d) $\operatorname{dim}(\operatorname{kernel}(A))+\operatorname{dim}(\operatorname{Image}(A))=$ column dimension of A
(e) $\operatorname{dim}(\operatorname{kernel}(A))+\operatorname{dim}\left(\operatorname{kernel}\left(A^{T}\right)\right)=$ column dimension of A

Testing Bases for Equivalence

\qquad

Theorem 7 (Equivalence Test for Bases)

Define augmented matrices

$$
B=\operatorname{aug}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right), \quad C=\operatorname{aug}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}\right), \quad W=\operatorname{aug}(B, C)
$$

Then relation $k=\ell=\operatorname{rank}(B)=\operatorname{rank}(C)=\operatorname{rank}(\boldsymbol{W})$ implies

1. v_{1}, \ldots, v_{k} is an independent set.
2. $\mathbf{u}_{1}, \ldots, \mathbf{u}_{\ell}$ is an independent set.
3. $\operatorname{span}\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{k}\right\}=\operatorname{span}\left\{\mathrm{u}_{1}, \ldots, \mathrm{u}_{\ell}\right\}$

In particular, colspace $(\boldsymbol{B})=$ colspace (\boldsymbol{C}) and each set of vectors is an equivalent basis for this vector space.

[^0]
Equivalent Bases: Computer Illustration

The following maple code applies the theorem to verify that two bases are equivalent:

1. The basis is determined from the colspace command in maple.
2. The basis is determined from the pivot columns of \boldsymbol{A}.

In maple, the report of the column space basis is identical to the nonzero rows of $\operatorname{rref}\left(A^{T}\right)$.

```
with(linalg):
A:=matrix([[1,0,3],[3,0,1],[4,0,0]]);
colspace(A); # Solve Ax=0, basis v1,v2 below
v1:=vector ([2,0,-1]);v2:=vector ([0, 2, 3]);
rref(A); # Find the pivot cols=1,3
u1:=col(A,1); u2:=col(A,3); # pivot col basis
B:=augment (v1,v2); C:=augment(ul,u2);
W:=augment (B,C) ;
rank(B),rank(C),rank(W); # Test requires all equal 2
```


A False Test for Equivalent Bases

The relation

$$
\operatorname{rref}(B)=\operatorname{rref}(C)
$$

holds for a substantial number of matrices \boldsymbol{B} and \boldsymbol{C}. However, it does not imply that each column of \boldsymbol{C} is a linear combination of the columns of \boldsymbol{B}.
For example, define

$$
B=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right), \quad C=\left(\begin{array}{ll}
1 & 1 \\
0 & 1 \\
1 & 0
\end{array}\right)
$$

Then

$$
\operatorname{rref}(B)=\operatorname{rref}(C)=\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)
$$

but $\operatorname{col}(\boldsymbol{C}, \mathbf{2})$ is not a linear combination of the columns of \boldsymbol{B}. This means colspace $(B) \neq \operatorname{colspace}(C)$.
Geometrically, the column spaces are planes in \boldsymbol{R}^{3} which intersect only along the line \boldsymbol{L} through the two points $(0,0,0)$ and $(1,0,1)$.

[^0]: Proof: Because $\operatorname{rank}(\boldsymbol{B})=\boldsymbol{k}$, then the first \boldsymbol{k} columns of \boldsymbol{W} are independent. If some column of \boldsymbol{C} is independent of the columns of \boldsymbol{B}, then \boldsymbol{W} would have $\boldsymbol{k}+1$ independent columns, which violates $\boldsymbol{k}=\operatorname{rank}(\boldsymbol{W})$. Therefore, the columns of \boldsymbol{C} are linear combinations of the columns of \boldsymbol{B}. Then vector space colspace (C) is a subspace of vector space colspace (B). Because both vector spaces have dimension \boldsymbol{k}, then colspace $(\boldsymbol{B})=\operatorname{colspace}(\boldsymbol{C})$. The proof is complete.

