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Partial Fraction Theory
Integration theory, algebraic manipulations and Laplace theory all use partial fraction the-
ory, which applies to polynomial fractions

a0 + a1s+ · · ·+ ans
n

b0 + b1s+ · · ·+ bmsm
(1)

where the degree of the numerator is less than the degree of the denominator.
In college algebra, it is shown that such rational functions (1) can be expressed as the sum
of partial fractions. An example:

s

(s− 1)(s− 2)
=
−1

s− 1
+

2

s− 2
.

Requirement: The denominators of fractions on the right must divide the denominator on
the left. The numerators of fractions on the right are constants.



Definition. A rational function with constant numerator and exactly one root in the de-
nominator is called a partial fraction.
Such terms have the form

A

(s− s0)k
.(2)

• The numerator in (2) is a real or complex constantA.

• The denominator in (2) has exactly one root s = s0.

• The power (s− s0)
k must divide the denominator in the rational function (1).



Real Quadratic Partial Fractions
Assume fraction (1) has real coefficients. If root s0 = α + iβ in (2) is complex, then
(s − s0)

k also divides the denominator in (1), where s0 = α − iβ is the complex
conjugate of s0. The corresponding partial fractions used in the expansion turn out to be
complex conjugates of one another, which can be paired and re-written as a fraction

A

(s− s0)k
+

A

(s− s0)k
=

Q(s)

((s− α)2 + β2)k
,(3)

where Q(s) is a real polynomial. This justifies the replacement of all partial fractions
A/(s− s0)

k with complex s0 by

B + Cs

((s− s0)(s− s0))
k

=
B + Cs

((s− α)2 + β2)k
,

in whichB andC are real constants. This real form is preferred over the sum of complex
fractions, because integral tables and Laplace tables typically contain only real formulas.



Simple Roots
Assume that (1) has real coefficients and the denominator of the fraction (1) has distinct
real roots s1, . . . , sN and distinct complex rootsα1±iβ1, . . . ,αM±iβM . The partial
fraction expansion of (1) is a sum given in terms of real constantsAp,Bq,Cq by

a0 + a1s+ · · ·+ ans
n

b0 + b1s+ · · ·+ bmsm
=

N∑
p=1

Ap

s− sp
+

M∑
q=1

Bq + Cq(s− αq)
(s− αq)2 + β2

q

.(4)



Multiple Roots
Assume (1) has real coefficients and the denominator of the fraction (1) has possibly mul-
tiple roots. Let Np be the multiplicity of real root sp and let Mq be the multiplicity of
complex root αq + iβq (βq > 0), 1 ≤ p ≤ N , 1 ≤ q ≤ M . The partial fraction
expansion of (1) is given in terms of real constantsAp,k,Bq,k,Cq,k by

N∑
p=1

∑
1≤k≤Np

Ap,k

(s− sp)k
+

M∑
q=1

∑
1≤k≤Mq

Bq,k + Cq,k(s− αq)
((s− αq)2 + β2

q)
k
.(5)



Summary
The theory for simple roots and multiple roots can be distilled as follows.

A polynomial quotient p/q with limit zero at infinity has a unique ex-
pansion into partial fractions. A partial fraction is either a constant
divided by a divisor of q having exactly one real root, or else a lin-
ear function divided by a real divisor of q, having exactly one complex
conjugate pair of roots.



The Sampling Method
Consider the expansion in partial fractions

2s− 2

s(s+ 1)2(s2 + 1)
=
A

s
+

B

s+ 1
+

C

(s+ 1)2
+
Ds+ E

s2 + 1
.(6)

The five undetermined real constants A through E are found by clearing the fractions,
that is, multiply (6) by the denominator on the left to obtain the polynomial equation

2s− 2 = A(s+ 1)2(s2 + 1) +Bs(s+ 1)(s2 + 1)
+Cs(s2 + 1) + (Ds+ E)s(s+ 1)2.

(7)

Next, five different values of s are substituted into (7) to obtain equations for the five
unknowns A through E. We always use the roots of the denominator to start: s = 0,
s = −1, s = i, s = −i are the roots of s(s + 1)2(s2 + 1) = 0 . Each complex
root results in two equations, by taking real and imaginary parts. The complex conjugate
root s = −i is not used, because it duplicates equations already obtained from s = i.
The three roots s = 0, s = −1, s = i give only four equations, so we invent another
value s = 1 to get the fifth equation.



The Equations

−2 = A (s = 0)
−4 = −2C (s = −1)

2i− 2 = (Di+ E)i(i+ 1)2 (s = i)
0 = 8A+ 4B + 2C + 4(D + E) (s = 1)

(8)

Because D and E are real, the complex equation (s = i) becomes two equations, as
follows.

2i− 2 = (Di+ E)i(i2 + 2i+ 1) Expand power.
2i− 2 = −2Di− 2E Use i2 = −1 twice.
2 = −2D Equate imaginary parts.
−2 = −2E Equate real parts.

Solving the 5 × 5 system, the answers are A = −2, B = 3, C = 2, D = −1,
E = 1.



The Method of Atoms
Consider the expansion in partial fractions

2s− 2

s(s+ 1)2(s2 + 1)
=
a

s
+

b

s+ 1
+

c

(s+ 1)2
+
ds+ e

s2 + 1
.(9)

Clearing the fractions in (9) gives the polynomial equation

2s− 2 = a(s+ 1)2(s2 + 1) + bs(s+ 1)(s2 + 1)
+cs(s2 + 1) + (ds+ e)s(s+ 1)2.

(10)

The method of atoms expands all polynomial products and collects on powers of s (func-
tions 1, s, s2, . . . are called atoms). The coefficients of the powers are matched to give 5
equations in the five unknowns a through e. The unique solution is a = −2, b = 3,
c = 2, d = −1, e = 1. Some details:

2s− 2 = (a+ b+ d) s4 + (2a+ b+ c+ 2d+ e) s3

+ (2a+ b+ d+ 2e) s2 + (2a+ b+ c+ e) s+ a
(11)

Matching powers implies the equations

a+ b+ d = 0, 2a+ b+ c+ 2d+ e = 0, 2a+ b+ d+ 2e = 0,
2a+ b+ c+ e = 2, a = −2.



Heaviside’s Coverup Method
The method applies only to the case of distinct roots of the denominator in (1). Extensions
to multiple-root cases can be made. Consider the expansion

2s+ 1

s(s− 1)(s+ 1)
=

A

s
+

B

s− 1
+

C

s+ 1
.(12)

Mysterious Details
Oliver Heaviside proposed to find in (12) the constantC = −1

2 by a cover–up method:

2s+ 1

s(s− 1)

∣∣∣∣
s+1=0

=
C
.

The instructions are to cover–up the matching factors (s+1) on the left and right with box
(Heaviside used two fingertips), then evaluate on the left at the root s which causes

the box contents to be zero. The other terms on the right are replaced by zero.



Justifying Heaviside’s Method
To begin, clear the fractionC/(s+ 1), that is, multiply (12) by the denominator s+ 1
of the partial fractionC/(s+ 1) to obtain the partially-cleared fraction relation

(2s+ 1)(s+ 1)

s(s− 1)(s+ 1)
=
A(s+ 1)

s
+
B(s+ 1)

s− 1
+
C(s+ 1)

(s+ 1)
.

Set (s+ 1) = 0 in the display. Cancelations left and right plus annihilation of two terms
on the right gives Heaviside’s prescription

2s+ 1

s(s− 1)

∣∣∣∣
s+1=0

= C.

The factor (s + 1) in (12) is by no means special: the same procedure applies to find A
and B. The method works for denominators with simple roots, that is, no repeated roots
are allowed.



Summary
Heaviside’s method in words:

To determine A in a given partial fraction A
s−s0

, multiply the relation
by (s − s0), which partially clears the fraction. Substitute s from the
equation s− s0 = 0 into the partially cleared relation.



Extension to Multiple Roots
Heaviside’s method can be extended to the case of repeated roots. The basic idea is to
factor–out the repeats. To illustrate, consider the partial fraction expansion details

R =
1

(s+ 1)2(s+ 2)
A sample rational function having re-
peated roots.

=
1

s+ 1

(
1

(s+ 1)(s+ 2)

)
Factor–out the repeats.

=
1

s+ 1

(
1

s+ 1
+
−1

s+ 2

)
Apply the cover–up method to the sim-
ple root fraction.

=
1

(s+ 1)2
+

−1

(s+ 1)(s+ 2)
Multiply.

=
1

(s+ 1)2
+
−1

s+ 1
+

1

s+ 2
Apply the cover–up method to the last
fraction on the right.

Terms with only one root in the denominator are already partial fractions. Thus the work
centers on expansion of quotients in which the denominator has two or more roots.



Special Methods
Heaviside’s method has a useful extension for the case of roots of multiplicity two. To
illustrate, consider these details:

R =
1

(s+ 1)2(s+ 2)
1 A fraction with multiple roots.

=
A

s+ 1
+

B

(s+ 1)2
+

C

s+ 2
2 See equation (5), page 6.

=
A

s+ 1
+

1

(s+ 1)2
+

1

s+ 2
3 FindB andC by Heaviside’s cover–
up method.

=
−1

s+ 1
+

1

(s+ 1)2
+

1

s+ 2
4 Details below.



Details
We discuss 4 details. Multiply the equation 1 = 2 by s+ 1 to partially clear fractions, the
same step as the cover-up method:

1

(s+ 1)(s+ 2)
= A+

B

s+ 1
+
C(s+ 1)

s+ 2
.

We don’t substitute s + 1 = 0, because it gives infinity for the second term. Instead, set
s =∞ to get the equation 0 = A+ C . BecauseC = 1 from 3, thenA = −1.
The illustration works for one root of multiplicity two, because s = ∞ will resolve the
coefficient not found by the cover–up method.
In general, if the denominator in (1) has a root s0 of multiplicity k, then the partial fraction
expansion contains terms

A1

s− s0
+

A2

(s− s0)2
+ · · ·+

Ak

(s− s0)k
.

Heaviside’s cover–up method directly findsAk, but notA1 toAk−1.



Cover-up Method and Complex Numbers
Consider the partial fraction expansion

10

(s+ 1)(s2 + 9)
=

A

s+ 1
+
Bs+ C

s2 + 9
.

The symbols A, B, C are real. The value of A can be found directly by the cover-up
method, givingA = 1. To findB andC , multiply the fraction expansion by s2 + 9, in
order to partially clear fractions, then formally set s2 +9 = 0 to obtain the two equations

10

s+ 1
= Bs+ C, s2 + 9 = 0.



Solving forB andC
The method uses the same idea used for one real root. By clearing fractions in the first, the
equations become

10 = Bs2 + Cs+Bs+ C, s2 + 9 = 0.

Substitute s2 = −9 into the first equation to give the linear equation

10 = (−9B + C) + (B + C)s.

Because this linear equation has two complex roots s = ±3i, then real constants B, C
satisfy the 2× 2 system

−9B + C = 10,
B + C = 0.

Solving givesB = −1,C = 1.



Extensions
The same method applies especially to fractions with 3-term denominators, like s2+s+1.
The only change made in the details is the replacement s2 → −s − 1. By repeated
application of s2 = −s− 1, the first equation can be distilled into one linear equation in
s with two roots. As before, a 2× 2 system results.


