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Linear Combination
A linear combination of vectors v1,. . . ,vk is defined to be a sum

x = c1v1 + · · ·+ ckvk,

where c1,. . . ,ck are constants.
Vector Algebra
The norm or length of a fixed vector ~X with components x1, . . . , xn is given by the
formula

| ~X| =
√
x2

1 + · · ·+ x2
n.

The dot product ~X · ~Y of two fixed vectors ~X and ~Y is defined by x1
...
xn

 ·
 y1

...
yn

 = x1y1 + · · ·+ xnyn.



Angle Between Vectors
If n = 3, then | ~X||~Y | cos θ = ~X · ~Y where θ is the angle between ~X and ~Y . In
analogy, two n-vectors are said to be orthogonal provided ~X · ~Y = 0. It is usual to
require that | ~X| > 0 and |~Y | > 0 when talking about the angle θ between vectors, in
which case we define θ to be the acute angle (0 ≤ θ < π) satisfying

cos θ =
~X · ~Y
| ~X||~Y |

.
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Figure 1. Angle θ between two vectors X, Y.



Projections
The shadow projection of vector ~X onto the direction of vector ~Y is the numberd defined
by

d =
~X · ~Y
|~Y |

.

The triangle determined by ~X and (d/|~Y |)~Y is a right triangle.
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Figure 2. Shadow projection d of vector X onto the direction of vector Y.
The vector projection of ~X onto the line L through the origin in the direction of ~Y is
defined by

proj~Y ( ~X) = d
~Y

|~Y |
=
~X · ~Y
~Y · ~Y

~Y .



Reflections
The vector reflection of vector ~X in the line L through the origin having the direction of
vector ~Y is defined to be the vector

refl~Y ( ~X) = 2 proj~Y ( ~X)− ~X = 2
~X · ~Y
~Y · ~Y

~Y − ~X.

It is the formal analog of the complex conjugate map a+ ib→ a− ib with the x-axis
replaced by line L.



Equality of matrices
Two matricesA andB are said to be equal provided they have identical row and column
dimensions and corresponding entries are equal. Equivalently, A and B are equal if they
have identical columns, or identical rows.

Augmented Matrix
If v1, . . . , vn are fixed vectors, then the augmented matrixA of these vectors is the matrix
package whose columns are v1, . . . , vn, and we write

A = aug(v1, . . . , vn).

Similarly, when two matricesA andB can be appended to make a new matrixC , we write

C = aug(A,B).



Matrix Addition Addition of two matrices is defined by applying fixed vector addition
on corresponding columns. Similarly, an organization by rows leads to a second definition
of matrix addition, which is exactly the same:

a11 · · · a1n

a21 · · · a2n
...

am1· · · amn

+


b11 · · · b1n

b21 · · · b2n
...

bm1· · · bmn

 =


a11 + b11 · · · a1n + b1n

a21 + b21 · · · a2n + b2n
...

am1 + bm1· · · amn + bmn

 .



Matrix Scalar Multiply
Scalar multiplication of matrices is defined by applying scalar multiplication to the columns
or rows:

k


a11 · · · a1n

a21 · · · a2n
...

am1 · · · amn

 =


ka11 · · · ka1n

ka21 · · · ka2n
...

kam1 · · · kamn

 .
Both operations on matrices are motivated by considering a matrix to be a long single
array or vector, to which the standard fixed vector definitions are applied. The operation of
addition is properly defined exactly when the two matrices have the same row and column
dimensions.



Matrix Multiply
College algebra texts cite the definition of matrix multiplication as the productAB equals
a matrixC given by the relations

cij = ai1b1j + · · ·+ ainbnj, 1 ≤ i ≤ m, 1 ≤ j ≤ k.

Matrix multiply as a dot product extension
The college algebra definition of C = AB can be written in terms of dot products as
follows:

cij = row(A, i) · col(B, j).

The general scheme for computing a matrix productAB can be written as

AB = aug(A col(B, 1), . . . , A col(B,n)).

Each product A col(B, j) is computed by taking dot products. Therefore, matrix multi-
ply can be viewed as a dot product extension which applies to packages of fixed vectors.
A matrix product AB is properly defined only in case the number of matrix rows of B
equals the number of matrix columns ofA, so that the dot products on the right are defined.



Matrix multiply as a linear combination of columns
The identity (

a b
c d

)(
x1

x2

)
= x1

(
a
c

)
+ x2

(
b
d

)
implies thatAx is a linear combination of the columns ofA, whereA is the 2×2 matrix
on the left.
This result holds in general. Assume A = aug(v1, . . . , vn) and ~X has components
x1, . . . , xn. Then the definition of matrix multiply implies

A ~X = x1v1 + x2v2 + · · ·+ xnvn.

This relation is used so often, that we record it as a formal result.

Theorem 1 (Linear Combination of Columns)
The product of a matrix A and a vector x satisfies

Ax = x1 col(A, 1) + · · ·+ xn col(A,n)

where col(A, i) denotes column i of matrix A.



How to multiply matrices on paper
Most persons make arithmetic errors when computing dot products

(
−7 3 5

)
·

 −1
3
−5

 = −9,

because alignment of corresponding entries must be done mentally. It is visually easier
when the entries are aligned.
On paper, the work for a matrix times a vector can be arranged so that the entries align.
The transcription above the matrix columns is temporary, erased after the dot product step.

−1 3 −5 −7 3 5
−5 −2 3

1 −3 −7

 ·
 −1

3
−5

 =

 −9
−16

25





Special matrices
The zero matrix, denoted 0, is the m × n matrix all of whose entries are zero. The
identity matrix, denoted I , is the n × n matrix with ones on the diagonal and zeros
elsewhere: aij = 1 for i = j and aij = 0 for i 6= j.

0 =


00 · · · 0
00 · · · 0

...
00 · · · 0

 , I =


10 · · · 0
01 · · · 0

...
00 · · · 1

 .
The negative of a matrix A is (−1)A, which multiplies each entry of A by the factor
(−1):

−A =


−a11 · · · −a1n

−a21 · · · −a2n
...

−am1· · · −amn

 .



Square matrices
An n × n matrix A is said to be square. The entries akk, k = 1, . . . , n of a square
matrix make up its diagonal. A square matrix A is lower triangular if aij = 0 for
i > j, and upper triangular if aij = 0 for i < j; it is triangular if it is either upper or
lower triangular. Therefore, an upper triangular matrix has all zeros below the diagonal and
a lower triangular matrix has all zeros above the diagonal. A square matrixA is a diagonal
matrix if aij = 0 for i 6= j, that is, the off-diagonal elements are zero. A square matrix
A is a scalar matrix ifA = cI for some constant c.

upper
triangular

=


a11a12 · · · a1n

0 a22 · · · a2n
...

0 0 · · · ann

,
lower
triangular

=


a11 0 · · · 0
a21 a22 · · · 0

...
an1an2 · · · ann

,

diagonal =


a11 0 · · · 0
0 a22 · · · 0

...
0 0 · · · ann

, scalar =


c0 · · · 0
0c · · · 0

...
00 · · · c

.



Matrix algebra
A matrix can be viewed as a single long array, or fixed vector, therefore the toolkit for fixed
vectors applies to matrices.
Let A, B, C be matrices of the same row and column dimensions and let k1, k2, k be
constants. Then

Closure The operations A + B and kA are defined and result in a new matrix of
the same dimensions.

Addition
rules

A+B = B +A commutative
A+ (B + C) = (A+B) + C associative
Matrix 0 is defined and 0 +A = A zero
Matrix−A is defined andA+ (−A) = 0 negative

Scalar
multiply
rules

k(A+B) = kA+ kB distributive I
(k1 + k2)A = k1A+ k2A distributive II
k1(k2A) = (k1k2)A distributive III
1A = A identity

These rules collectively establish that the set of all m × n matrices is an abstract vector
space.



Matrix Multiply Properties The operation of matrix multiplication gives rise to some
new matrix rules, which are in common use, but do not qualify as vector space rules.

Associative A(BC) = (AB)C , provided productsBC andAB are defined.
Distributive A(B + C) = AB + AC , provided products AB and AC are

defined.
Right Identity AI = A, providedAI is defined.

Left Identity IA = A, provided IA is defined.



Transpose
Swapping rows and columns of a matrix A results in a new matrix B whose entries are
given by bij = aji. The matrix B is denoted AT (pronounced “A-transpose”). The
transpose has these properties:

(AT)T = A Identity
(A+B)T = AT +BT Sum
(AB)T = BTAT Product
(kA)T = kAT Scalar

A matrixA is said to be symmetric ifAT = A, which implies that the row and column
dimensions ofA are the same and aij = aji.



Inverse matrix
A square matrixB is said to be an inverse of a square matrixA providedAB = BA =
I . The symbol I is the identity matrix of matching dimension. A given matrixA may not
have an inverse, for example, 0 times any square matrixB is 0, which prohibits a relation
0B = B0 = I . WhenA does have an inverseB, then the notationA−1 is used forB,
henceAA−1 = A−1A = I .

Theorem 2 (Inverses)
Let A, B, C denote square matrices. Then

(a) A matrix has at most one inverse, that is, if AB = BA = I and AC =
CA = I , then B = C.

(b) If A has an inverse, then so does A−1 and (A−1)−1 = A.

(c) If A has an inverse, then (A−1)T = (AT)−1.

(d) If A and B have inverses , then (AB)−1 = B−1A−1.



Inverse of a 2× 2 Matrix

Theorem 3 (Inverse of a 2× 2)(
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
.

In words, the theorem says:

Swap the diagonal entries, change signs on the off-diagonal entries,
then divide by the determinant ad− bc.


