Geometry of linear transformations
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Sub-classes Dilation (k > 1) and Contraction (0 < k < 1).
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Define proj;(x) = (x - u)u where u = ( o

) iS a unit vector,

u? + u2 = 1. The matrix is ( titiy -t )
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Define reflf (x) = 2(x-u)u—x. The matrix is ( Z _Z ) a?+b% = 1.
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Change vertical y — y + kz, leave z fixed.

Change horizontal x — x + ky, leave y fixed.



Properties of Geometric Transformations

e The columns of a projection matrix are scalar multiples of a single unit vector u, there-
fore the columns are either the zero vector or else a vector parallel to u.

e The columns of a reflection matrix are unit vectors that are pairwise orthogonal, that is,
their pairwise dot products are zero.

e A shear can be classified as horizontal or vertical by its effect in mapping columns of
the identity matrix. A horizontal shear leaves the first column of the identity matrix
fixed, whereas a vertical shear leaves the second column of the identity matrix fixed.



