Geometry of linear transformations

 $\begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix}$ Scaling Sub-classes **Dilation** (k > 1) and **Contraction** (0 < k < 1). $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ Projection Define $\operatorname{proj}_L(\mathbf{x}) = (\mathbf{x} \cdot \mathbf{u})\mathbf{u}$ where $\mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$ is a unit vector, $u_1^2+u_2^2=1.$ The matrix is $\left(egin{array}{cc} u_1u_1 & u_1u_2 \ u_1u_2 & u_2u_2 \end{array}
ight)^{-1}$ $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ Reflection Define $\operatorname{refl}_L(\mathbf{x}) = 2(\mathbf{x} \cdot \mathbf{u})\mathbf{u} - \mathbf{x}$. The matrix is $\begin{pmatrix} a & b \\ b & -a \end{pmatrix}$, $a^2 + b^2 = 1$. $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ Rotation In general, $\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$ $\begin{pmatrix} 0 & 2 \\ -2 & 0 \end{pmatrix}$ Scaled Rotation In general, $\begin{pmatrix} r\cos\theta & r\sin\theta \\ -r\sin\theta & r\cos\theta \end{pmatrix}$ $\begin{pmatrix} 1 & 0 \\ k & 1 \end{pmatrix}$ Vertical Shear Change vertical $y \rightarrow y + kx$, leave x fixed. $\begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$ Horizontal Shear Change horizontal $x \to x + ky$, leave y fixed.

Properties of Geometric Transformations _

- The columns of a projection matrix are scalar multiples of a single unit vector **u**, therefore the columns are either the zero vector or else a vector parallel to **u**.
- The columns of a reflection matrix are unit vectors that are pairwise orthogonal, that is, their pairwise dot products are zero.
- A shear can be classified as horizontal or vertical by its effect in mapping columns of the identity matrix. A horizontal shear leaves the first column of the identity matrix fixed, whereas a vertical shear leaves the second column of the identity matrix fixed.