Elementary Matrices An elementary matrix E is the result of applying a combination, multiply or swap rule to the identity matrix. The computer algebra system maple displays typical 4×4 elementary matrices ($C=$ Combination, $\mathrm{M}=$ Multiply, $\mathrm{S}=\mathrm{Swap}$) as follows.

$$
\begin{aligned}
& \text { with(linalg): } \\
& \text { Id:=diag(1,1,1,1); } \\
& \text { C: =addrow(Id,2,3,c); } \\
& \text { M:=mulrow(Id,3,m); } \\
& \text { S:=swaprow (Id,1,4); }
\end{aligned}
$$

The answers:

$$
\begin{gathered}
C=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & c & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad M=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & m & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \\
S=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) .
\end{gathered}
$$

Constructing elementary matrices E
Mult
Change a one in the identity matrix to symbol $m \neq 0$.

Combo

Swap Interchange two rows of the identity matrix.

Constructing E^{-1} from elementary matrix E
Mult Change diagonal multiplier $m \neq 0$ in E to $1 / m$.

Combo Change multiplier c in E to $-c$.

Swap
The inverse of E is E itself.

Theorem 20 (The rref and elementary matrices) Let A be a given matrix of row dimension n. Then there exist $n \times n$ elementary matrices E_{1}, E_{2}, \ldots, E_{k} such that

$$
\operatorname{rref}(A)=E_{k} \cdots E_{2} E_{1} A
$$

The result is the observation that left multiplication of matrix A by elementary matrix E gives the answer $E A$ for the corresponding multiply, combination or swap operation. The matrices E_{1}, E_{2}, \ldots represent the multiply, combination and swap operations performed in the frame sequence which take the First Frame into the Last Frame, or equivalently, original matrix A into $\operatorname{rref}(A)$.

A certain 6-frame sequence.

$$
\begin{aligned}
A_{1} & =\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 0 \\
3 & 6 & 3
\end{array}\right) \\
A_{2} & =\left(\begin{array}{rrr}
1 & 2 & 3 \\
0 & 0 & 6 \\
3 & 6 & 3
\end{array}\right) \\
A_{3} & =\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 1 \\
3 & 6 & 3
\end{array}\right)
\end{aligned}
$$

$$
A_{4}=\left(\begin{array}{rrr}
1 & 2 & 3 \\
0 & 0 & 1 \\
0 & 0 & -6
\end{array}\right)
$$

$$
A_{5}=\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

$$
A_{6}=\left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Frame 1, original matrix.

Frame 2, combo(1,2,-2).

Frame 3, mult(2,-1/6).

Frame 4, combo(1,3,-3).

Frame 5, combo(2,3,-6).

Frame 6, combo(2,1,-3). Found $\operatorname{rref}\left(A_{1}\right)$.

The corresponding 3×3 elementary matrices are

$$
\begin{aligned}
& E_{1}=\left(\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \text { Frame 2, combo(1,2,-2) } \\
& \text { applied to } I \text {. } \\
& E_{2}=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 / 6 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \text { Frame 3, mult(2,-1/6) ap- } \\
& \text { plied to } I \text {. } \\
& E_{3}=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
-3 & 0 & 1
\end{array}\right) \\
& E_{4}=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -6 & 1
\end{array}\right) \\
& \text { Frame 4, combo(1,3,-3) } \\
& \text { applied to } I \text {. } \\
& E_{5}=\left(\begin{array}{rrr}
1 & -3 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \text { Frame 5, combo(2,3,-6) } \\
& \text { applied to } I \text {. } \\
& \text { Frame 6, combo(2,1,-3) } \\
& \text { applied to } I \text {. }
\end{aligned}
$$

The frame sequence can be written as follows. $A_{2}=E_{1} A_{1}$

Frame $2, E_{1}$ equals combo(1,2,-2) on I.
$A_{3}=E_{2} A_{2}$
Frame $3, E_{2}$ equals mult($2,-1 / 6$) on I.
$A_{4}=E_{3} A_{3}$
Frame 4, E_{3} equals combo($1,3,-3$) on I.
$A_{5}=E_{4} A_{4}$
Frame 5, E_{4} equals combo($2,3,-6$) on I.
$A_{6}=E_{5} A_{5}$
Frame $6, E_{5}$ equals combo($2,1,-3$) on .
$A_{6}=E_{5} E_{4} E_{3} E_{2} E_{1} A_{1} \quad$ Summary frames 1-6.

Then

$$
\operatorname{rref}\left(A_{1}\right)=E_{5} E_{4} E_{3} E_{2} E_{1} A_{1},
$$

which is the result of the Theorem.

The summary:

$$
A_{6}=\left(\begin{array}{rrr}
1 & -3 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -6 & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
-3 & 0 & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -\frac{1}{6} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) A_{1}
$$

Because $A_{6}=\operatorname{rref}\left(A_{1}\right)$, the above equation gives the inverse relationship

$$
A_{1}=E_{1}^{-1} E_{2}^{-1} E_{3}^{-1} E_{4}^{-1} E_{5}^{-1} \operatorname{rref}\left(A_{1}\right)
$$

Each inverse matrix is simplified by the rules for constructing E^{-1} from elementary matrix E, the result being

$$
A_{1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
3 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 6 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 3 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \operatorname{rref}\left(A_{1}\right)
$$

