1. (5 points) Give a basis for each of the four fundamental subspaces associated to the following matrix:

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

2. (5 points) V is the span of the given vectors in \mathbb{R}^{4}. Find orthonormal vectors whose span is V.

$$
\bar{v}_{1}=\left(\begin{array}{l}
3 \\
0 \\
4 \\
0
\end{array}\right), \bar{v}_{2}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right)
$$

3. (5 points) For the subspace V in the previous problem, give the matrix that projects \mathbb{R}^{4} to V and the matrix that projects \mathbb{R}^{4} to V^{\perp}.
4. (5 points) Find the least squares best fit line for the points $(0,1),(2,3),(4,4)$.
5. (5 points) Find the determinant of the following matrix:

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

6. (5 points) For the following matrix, find the eigenvalues and the maximum number of linearly independent eigenvectors. Find this many linearly independent eigenvectors.

$$
A=\left(\begin{array}{ll}
1 & 3 \\
2 & 2
\end{array}\right)
$$

7. (5 points) For the following matrix, find the eigenvalues and the maximum number of linearly independent eigenvectors. Find this many linearly independent eigenvectors.

$$
A=\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 1 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 3 & 0 & 0 \\
0 & 0 & 0 & 0 & 3 & 1 \\
0 & 0 & 0 & 0 & 0 & 3
\end{array}\right)
$$

8. (5 points) Describe the plane in \mathbb{R}^{3} that contains the three points $(1,0,0),(1,1,1)$, $(1,2,0)$.
9. (5 points) Suppose an $n \times n$ matrix A has all eigenvalues equal to 0 . Show that A^{n} has all entries equal to 0 .
10. (1000000 points) Prove the Cayley-Hamilton Theorem for matrices with real eigenvalues. You may assume the Jordan Form Theorem.

No new questions beyond this point.

