ANSWERS

Essay Questions

1. (10 points) Define an Elementary Matrix. Display the fundamental matrix multiply equation which summarizes a sequence of swap, combination and multiply operations, transforming a matrix A into a matrix B.

Answer:

An elementary matrix is a matrix E obtained from the identity matrix I by applying one combination, swap or multiply operation. The equation is

$$
E_{k} \cdots E_{2} E_{1} A=B
$$

where $E_{1}, E_{2}, \ldots, E_{k}$ are elementary matrices representing swap, multiply and combination operations that take A into B.
2. (20 points) State the Fundamental Theorem of Linear Algebra. Include Part 1: The dimensions of the four subspaces, and Part 2: The orthogonality equations for the four subspaces.

Answer:

Let A denote an $m \times n$ matrix of rank r. Part 1 . The dimensions of the nullspace (A), colspace (A), rowspace (A), nullspace $\left(A^{T}\right)$ are respectively $n-r, r, r, m-r$.
Part 2. rowspace $(A) \perp$ nullspace (A), colspace $(A) \perp$ nullspace $\left(A^{T}\right)$. Both can be summarized by rowspace \perp nullspace, applied to both A and A^{T}.

Problems 3 to 17

3. (30 points) Find a factorization $A=L U$ into lower and upper triangular matrices for the matrix $A=\left(\begin{array}{lll}2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1\end{array}\right)$.

Answer:

Let E_{1} be the result of $\operatorname{combo}(1,2,-1 / 2)$ on I, and E_{2} the result of combo(2,3,-2/3) on I. Then $E_{2} E_{1} A=U=\left(\begin{array}{ccc}2 & 1 & 0 \\ 0 & \frac{3}{2} & 1 \\ 0 & 0 & \frac{1}{3}\end{array}\right)$. Let $L=E_{1}^{-1} E_{2}^{-1}=\left(\begin{array}{ccc}1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & \frac{2}{3} & 1\end{array}\right)$.
4. (30 points) Determine which values of k correspond to infinitely many solutions for the system $A \vec{x}=\vec{b}$ given by

$$
A=\left(\begin{array}{ccc}
1 & 4 & k \\
0 & k-3 & k-3 \\
1 & 4 & 1
\end{array}\right), \quad \vec{b}=\left(\begin{array}{c}
1 \\
-1 \\
k
\end{array}\right)
$$

Answer:

There is a unique solution for $\operatorname{det}(A) \neq 0$, which implies $k \neq 1$ and $k \neq 3$. Elimination methods with swap, combo, multiply give $\left(\begin{array}{cccc}1 & 4 & k & 1 \\ 0 & k-3 & k-3 & -1 \\ 0 & 0 & 1-k & k-1\end{array}\right)$. Then (1) Unique solution for three lead variables, equivalent to the determinant nonzero for the frame above, or $(k-3)(1-k) \neq 0 ;(2)$ No solution for $k=3$ [signal equation]; (3) Infinitely many solutions for $k=1$ [one free variable].
5. (30 points) Find the complete solution $\vec{x}=\vec{x}_{h}+\vec{x}_{p}$ for the nonhomogeneous system

$$
\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
2 \\
3 \\
0
\end{array}\right) .
$$

The homogeneous solution \vec{x}_{h} is a linear combination of Strang's special solutions. Symbol \vec{x}_{p} denotes a particular solution.

Answer:

The augmented matrix has reduced row echelon form (last frame) equal to the matrix $\left(\begin{array}{lllll}0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$. Then $x_{1}=t_{1}, x_{2}=1, x_{3}=1, x_{4}=t_{2}$ is the general solution in scalar
form. The partial derivative on t_{1} gives the homogeneous solution basis vector $\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)$.
The partial derivative on t_{2} gives the homogeneous solution basis vector $\left(\begin{array}{c}0 \\ 0 \\ 0 \\ 1\end{array}\right)$. Then $\vec{x}_{h}=c_{1}\left(\begin{array}{c}1 \\ 0 \\ 0 \\ 0\end{array}\right)+c_{2}\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)$. Set $t_{1}=t_{2}=0$ in the scalar solution to find a particular solution $\vec{x}_{p}=\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right)$.
6. (20 points) Define S to be the set of all vectors \vec{x} in \mathcal{R}^{3} such that $x_{1}+x_{3}=0$ and $x_{3}+x_{2}=x_{1}$. Apply a theorem which concludes that S is a subspace of \mathcal{R}^{3}. This implies stating the hypotheses and checking that they apply.

Answer:

Let $A=\left(\begin{array}{rrr}1 & 0 & 1 \\ -1 & 1 & 1 \\ 0 & 0 & 0\end{array}\right)$. Then the restriction equations can be written as $A \vec{x}=\overrightarrow{0}$. Apply the nullspace theorem (also called the kernel theorem), which says that the nullspace of a matrix is a subspace.

Another solution: The given restriction equations are linear homogeneous algebraic equations. Therefore, S is the nullspace of some matrix B, hence a subspace of \mathcal{R}^{3}. This solution uses the fact that linear homogeneous algebraic equations can be written as a matrix equation $B \vec{x}=\overrightarrow{0}$, without actually finding the matrix.
7. (20 points) The 5×7 matrix A below has some independent columns. Report the
independent columns of A, according to the Pivot Theorem.

$$
A=\left(\begin{array}{rrrrrrr}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-3 & 0 & 0 & 0 & -2 & 1 & -1 \\
-1 & 0 & 0 & 0 & 0 & 1 & 0 \\
6 & 0 & 0 & 0 & 6 & 0 & 3 \\
2 & 0 & 0 & 0 & 2 & 0 & 1
\end{array}\right)
$$

Answer:

Compute $\operatorname{rref}(A)=\left(\begin{array}{ccccccc}1 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 / 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$. The pivot columns are 1 and 5 .
8. (40 points) Let S be the subspace of \mathbb{R}^{4} spanned by the vectors $\vec{v}_{1}=\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 0\end{array}\right)$ and $\vec{v}_{2}=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right)$. Find the Gram-Schmidt orthonormal basis of S.

Answer:

Let $\vec{y}_{1}=\vec{v}_{1}$ and $\vec{u}_{1}=\frac{1}{\left\|\vec{y}_{1}\right\|} \vec{y}_{1}$. Then $\vec{u}_{1}=\frac{1}{\sqrt{3}}\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 0\end{array}\right)$. Let $\vec{y}_{2}=\vec{v}_{2}$ minus the shadow projection of \vec{v}_{2} onto the span of \vec{v}_{1}. Then

$$
\vec{y}_{2}=\vec{v}_{2}-\frac{\vec{v}_{2} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} \overrightarrow{v_{1}}=\frac{1}{3}\left(\begin{array}{r}
2 \\
-1 \\
-1 \\
3
\end{array}\right) .
$$

Finally, $\vec{u}_{2}=\frac{1}{\left\|\vec{y}_{2}\right\|} \vec{y}_{2}$. We report the Gram-Schmidt basis:

$$
\vec{u}_{1}=\frac{1}{\sqrt{3}}\left(\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right), \quad \vec{u}_{2}=\frac{1}{\sqrt{15}}\left(\begin{array}{r}
2 \\
-1 \\
-1 \\
3
\end{array}\right)
$$

9. (30 points) Define matrix A and vector \vec{b} by the equations

$$
A=\left(\begin{array}{rrr}
-2 & 3 & 0 \\
0 & -2 & 4 \\
1 & 0 & -2
\end{array}\right), \quad \vec{b}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

Find the value of x_{2} by Cramer's Rule in the system $A \vec{x}=\vec{b}$.

Answer:

$x_{2}=\Delta_{2} / \Delta, \Delta_{2}=\operatorname{det}\left(\begin{array}{rrr}-2 & 1 & 0 \\ 0 & 2 & 4 \\ 1 & 3 & -2\end{array}\right)=36, \Delta=\operatorname{det}(A)=4, x_{2}=9$.
10. (20 points) Display the entry in row 4, column 3 of the adjugate matrix of $A=$ $\left(\begin{array}{rrrr}0 & 2 & -1 & 0 \\ 0 & 0 & 4 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 3 & -2 & 0\end{array}\right)$.
The adjugate matrix is also called the adjoint matrix. It appears in the formula $C^{-1}=\frac{\operatorname{adj}(C)}{\operatorname{det}(C)}$.

Answer:

The answer is the cofactor of A in row 3 , column $4=(-1)^{7}$ times the minor of A in row 3, column 4. The minor equals 8 . The answer is -8 .
11. (10 points) Consider a 3×3 real matrix A with eigenpairs

$$
\left(-1,\left(\begin{array}{r}
5 \\
6 \\
-4
\end{array}\right)\right), \quad\left(1,\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)\right), \quad\left(2,\left(\begin{array}{r}
-1 \\
2 \\
0
\end{array}\right)\right) .
$$

Display an invertible matrix P and a diagonal matrix D such that $A P=P D$.

Answer:

The columns of P are the eigenvectors and the diagonal entries of D are the eigenvalues, taken in the same order.
12. (30 points) Find the eigenvalues of the matrix $A=\left(\begin{array}{rrrr}0 & -12 & 3 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 5 & 1 & 3\end{array}\right)$.

To save time, do not find eigenvectors!

Answer:

The characteristic polynomial is $\operatorname{det}(A-r I)=(-r)(3-r)(r-2)(r+2)$. The eigenvalues are $0,2,-2,3$. Determinant expansion of $\operatorname{det}(A-\lambda I)$ is by the cofactor method along column 1. This reduces it to a 3×3 determinant, which can be expanded by the cofactor method along column 3.
13. (20 points) Let I denote the 3×3 identity matrix. Assume given two 3×3 matrices B, C, which satisfy $C P=P B$ for some invertible matrix P. Let C have eigenvalues $-1,1$, 0 . Let $A=2 I+3 B$. Find the eigenvalues of A^{3}.

Answer:

Both B and C have the same eigenvalues, because $\operatorname{det}(B-\lambda I)=\operatorname{det}\left(P(B-\lambda I) P^{-1}\right)=$ $\operatorname{det}\left(P C P^{-1}-\lambda P P^{-1}\right)=\operatorname{det}(C-\lambda I)$. Further, both B and C are diagonalizable. The answer is the same for all such matrices, so the computation can be done for a diagonal matrix $B=\operatorname{diag}(-1,1,0)$. In this case, $A=2 I+3 B=\operatorname{diag}(2,2,2)+\operatorname{diag}(-3,3,0)=$ $\operatorname{diag}(-1,5,2)$ and the eigenvalues of A are $-1,5,2$. To finish, observe that the eigenvalues of A^{3} and A are related, because $A \vec{v}=\lambda \vec{v}$ implies $A^{3} \vec{v}=\lambda^{3} \vec{v}$. Therefore, the eigenvalues of A^{3} are $-1,125,8$.
14. (10 points) The Cayley-Hamilton theorem suggests that there are real 2×2 matrices A such that $A^{2}=A$. Give an example of one such matrix A.

Answer:

Choose any matrix whose characteristic equation is $\lambda^{2}-\lambda=0$. Then $A^{2}-A=0$ by the Cayley-Hamilton theorem.
15. (40 points) The spectral theorem says that a symmetric matrix A can be factored into $A=Q D Q^{T}$ where Q is orthogonal and D is diagonal. Find Q and D for the symmetric
$\operatorname{matrix} A=\left(\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right)$.

Answer:

Start with the equation $r^{2}-4 r+3=0$ having roots $r=1,3$. Compute the eigenpairs $\left(1, \vec{v}_{1}\right)$, $\left(3, \vec{v}_{2}\right)$ where $\vec{v}_{1}=\binom{1}{1}$ and $\vec{v}_{2}=\binom{-1}{1}$. The two vectors are orthogonal but not of unit length. Unitize them to get $\vec{u}_{1}=\frac{1}{\sqrt{2}} \vec{v}_{1}, \vec{u}_{2}=\frac{1}{\sqrt{2}} \vec{v}_{2}$. Then $Q=<\vec{u}_{1} \left\lvert\, \vec{u}_{2}>=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right)\right.$, $D=\operatorname{diag}(1,3)$.
16. (30 points) Let the linear transformation T from \mathcal{R}^{2} to \mathcal{R}^{2} be defined by its action on two independent vectors:

$$
T\left(\binom{3}{0}\right)=\binom{4}{4}, T\left(\binom{2}{1}\right)=\binom{4}{2}
$$

Find the unique 2×2 matrix A such that T is defined by the matrix multiply equation $T(\vec{x})=A \vec{x}$.

Answer:

Let A be the matrix for T, such that $T(\vec{v})=A \vec{v}$ (matrix multiply). Then $A\left(\begin{array}{ll}3 & 2 \\ 0 & 1\end{array}\right)=$ $\left(\begin{array}{ll}4 & 4 \\ 4 & 2\end{array}\right)$. Solving for A gives $A=\left(\begin{array}{ll}4 & 4 \\ 4 & 2\end{array}\right)\left(\begin{array}{ll}3 & 2 \\ 0 & 1\end{array}\right)^{-1}=\left(\begin{array}{rr}4 / 3 & 4 / 3 \\ 4 / 3 & -2 / 3\end{array}\right)$.
17. (10 points) Assume singular value decomposition $A=U \Sigma V^{T}$ given by

$$
\left(\begin{array}{rr}
2 & 2 \\
-1 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{rr}
\sqrt{8} & 0 \\
0 & \sqrt{2}
\end{array}\right)\left(\frac{1}{\sqrt{2}}\left(\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right)\right)^{T} .
$$

Find a formula for the pseudo-inverse, but don't bother to multiply out matrices.

Answer:

The definition is $A^{+}=V \Sigma^{+} U^{T}$. Identifying the matrices from the formula gives $A^{+}=$ $\left(\frac{1}{\sqrt{2}}\left(\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right)\right)\left(\begin{array}{rr}\frac{1}{\sqrt{8}} & 0 \\ 0 & \frac{1}{\sqrt{2}}\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)^{T}$.

