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Linear Nonhomogeneous System
Given numbers a11, . . . , amn, b1, . . . , bm, consider the nonhomogeneous system of m
linear equations in n unknowns x1, x2, . . . , xn

a11x1 + a12x2 + · · ·+ a1nxn = b1,
a21x1 + a22x2 + · · ·+ a2nxn = b2,

...
am1x1 + am2x2 + · · ·+ amnxn = bm.

(1)

Constants a11, . . . , amn are called the coefficients of system (1). Constants b1, . . . , bm

are collectively referenced as the right hand side, right side or RHS.



Linear Homogeneous System
Given numbers a11, . . . , amn consider the homogeneous system of m linear equations in
n unknowns x1, x2, . . . , xn

a11x1 + a12x2 + · · ·+ a1nxn = 0,
a21x1 + a22x2 + · · ·+ a2nxn = 0,

...
am1x1 + am2x2 + · · ·+ amnxn = 0.

(2)

Constants a11, . . . , amn are called the coefficients of system (2).



The Three Possibilities

Solutions of general linear system (1) may be classified into exactly three possibilities:

1. No solution.
2. Infinitely many solutions.
3. A unique solution.



Examples
A solution (x, y) of a 2 × 2 system is a pair of values that simultaneously satisfy both
equations. Consider the following three systems:

1 No Solution 2 Infinitely Many Solutions 3 Unique Solution{
x − y = 0,

0 = 1.

{
x − 2y = 0,

0 = 0.

{
3x + 2y = 1,
x − y = 2.

Explanations

• System 1 cannot have a solution because of the signal equation 0 = 1, a false equa-
tion.

• System 2 has infinitely many solutions, one solution (x, y) for each point on the line
x − 2y = 0. Analytic geometry writes the solutions for−∞ < t1 < ∞ as the
parametric equations {

x = 2t1,
y = t1.

• System 3 has a unique solution x = 1, y = −1.



Definition 1 (Parametric Equations)
The terminology parametric equations refers to a set of equations of the form

x1 = d1 + c11t1 + · · ·+ c1ktk,
x2 = d2 + c21t1 + · · ·+ c2ktk,

...
xn = dn + cn1t1 + · · ·+ cnktk.

(3)

The numbers d1, . . . , dn, c11, . . . , cnk are known constants and the variable names
t1, . . . , tk are parameters. The symbols t1, . . . , tk are therefore allowed to take on
any value from−∞ to∞.

Analytic Geometry

• In calculus courses, parametric equations are encountered as scalar equations of lines
(k = 1) and planes (k = 2).

• If no symbols t1, t2, . . . appear, then the equations describe a point.



Definition 2 (General Solution)
A general solution of (1) is a set of parametric equations (3) plus two additional require-
ments:

Equations (3) satisfy (1) for all real values of t1, . . . , tk.(4)
Any solution of (1) can be obtained from (3) by specializing values of
the parameter symbols t1, t2, . . . tk.(5)



The Three Rules
The following rules neither create nor destroy solutions of the original system.

Swap Two equations can be interchanged without changing the solution
set.

Mult An equation can be multiplied by m 6= 0 without changing the
solution set.

Combo A multiple of one equation can be added to a different equation
without changing the solution set.

Reversible Rules
The mult and combo rules replace an existing equation by a new one, whereas swap
replaces two equations. The three operations are reversible:

• The swap rule is reversed by repeating it.

• The mult rule is reversed by repeating it with multiplier 1/m.

• The combo rule is reversed by repeating it with c replaced by−c.



Reduced Echelon Systems

• A lead variable is a variable that appears first (left-to-right) with coefficient one in
exactly one equation.

• A system of linear algebraic equations in which each nonzero equation has a lead
variable is called a reduced echelon system. The conventions:

– Within an equation, variables must appear in variable list order.
– Equations with lead variables are listed in variable list order.
– Following them are any zero equations.

• A free variable in a reduced echelon system is any variable that is not a lead variable.



Recognition of Reduced Echelon Systems

A linear system (1) is recognized as a reduced echelon system exactly when the first
variable listed in each equation has coefficient one and that variable name appears
nowhere else in the system.

Form of a Reduced Echelon System
A reduced echelon system can be written in the special form

xi1 + E11xj1 + · · · + E1kxjk = D1,
xi2 + E21xj1 + · · · + E2kxjk = D2,

...
xim + Em1xj1 + · · · + Emkxjk = Dm.

(6)

Symbols Defined

• The numbers E11, . . . , Emk and D1, . . . , Dm are known constants.

• Variables xi1, . . . , xim
are the lead variables.

• The remaining variables xj1
, . . . , xik

are the free variables.



Writing a Standard Parametric Solution
Assume variable list order x, y, z, w, u, v for the reduced echelon system below. Boxed
variables are lead variables and the remaining are free variables.

x + 4w + u + v = 1,
y − u + v = 2,
z − w + 2u− v = 0.

(7)

General Solution Algorithm
If the reduced echelon system has zero free variables, then the unique solution is already
displayed. Otherwise, there is at least one free variable, and then the 2–step algorithm
below applies to write out the general solution.

1. Set the free variables equal to invented symbols t1, . . . , tk. Each symbol can assume
values from−∞ to∞.

2. Solve equations (7) for the leading variables and then back-substitute the free variables
to obtain a standard general solution.



From Reduced Echelon System To General Solution
Assume variable list order x, y, z, w, u, v in the reduced echelon system

x + 4w + u + v = 1,
y − u + v = 2,
z − w + 2u− v = 0.

(8)

The boxed lead variables in (8) are x, y, z and the free variables are w, u, v. Assign
invented symbols t1, t2, t3 to the free variables and back-substitute in (8) to obtain a
standard general solution 

x = 1− 4t1 − t2 − t3,
y = 2 + t2 − t3

z = t1 − 2t2 + t3,
w = t1,
u = t2,
v = t3.



Elimination Algorithm
The algorithm employs at each algebraic step one of the three rules defined previously as
mult, swap and combo.

• The objective of each algebraic step is to increase the number of lead variables. The
process stops when no more lead variables can be found, in which case the last system
of equations is a reduced echelon system. It may also stop when a signal equation
is found. Otherwise, equations with lead variables migrate to the top, in variable list
order dictated by the lead variable, and equations with no variables are swapped to the
end. Within each equation, variables appear in variable list order, left-to-right.

• Reversibility of the algebraic steps means that no solutions are created or destroyed:
the original system and all systems in the intermediate steps have exactly the same
solutions.

• The final reduced echelon system has a standard general solution. This expression is
either the unique solution of the system, or else in the case of infinitely many solutions,
it is a parametric solution using invented symbols t1, . . . , tk.



Theorem 1 (Elimination)
Every linear system has either no solution or else it has exactly the same solutions
as an equivalent reduced echelon system, obtained by repeated application of the
three rules of swap, mult and combo.



Documenting the 3 Rules
Throughout, symbols s and t stand for source and target equations. Symbols c and
m stand for constant and multiplier. The multiplier must be nonzero. The symbol
R used in textbooks abbreviates Row, which corresponds exactly to equation.

Swap(s,t) Interchange equation/row s and equation/row t.
Textbooks: SWAP Rs, Rt
Blackboard: swap(s,t)

Mult(t,m) Multiply equation/row t by m 6= 0.
Textbooks: (m)Rt
Blackboard: mult(t,m)

Combo(s,t,c) Multiply equation/row s by c and then add it to a different equa-
tion/row t.
Textbooks: Rt = (c)Rs + Rt
Blackboard: combo(s,t,c)



From Equations to Matrices

The system

{
3x + 4y = 1
5x − 6y = 2

can be represented as the augmented matrix C =(
3 4 1
5 −6 2

)
. The process is automated for any number of variables, by observing that

each column of C is a partial derivative, e.g., column 1 of C is the partial on x, column 2
of C the partial on y. The right column of C contains the RHS of each equation.

From Matrices to Equations
The variable names x, y are written above columns 1, 2 of the augmented matrix, as below.

x y =(
3 4 1
5 −6 2

)
The scalar system is reconstructed from the augmented matrix by taking dot products, of
the symbols on the top row against the rows of the matrix. Each dot product answer is
followed by an equal sign and then the number in the third column.



The Three Rules and Maple
Newer versions of maple use the LinearAlgebra package, and a single function
RowOperation() to accomplish the same thing done by three functions addrow(),
mulrow(), swaprow() in the older linalg package. A conversion table appears be-
low. This table can be used to create maple macros and functions for an easy conversion
from hand-written text to maple code.

Hand-written maple linalg maple LinearAlgebra
swap(s,t) swaprow(A,s,t) RowOperation(A,[t,s])
mult(t,c) mulrow(A,t,c) RowOperation(A,t,c)
combo(s,t,c) addrow(A,s,t,c) RowOperation(A,[t,s],c)



RREF
The reduced row-echelon form of a matrix, or rref, is specified by the following require-
ments.

• Zero rows appear last.

• Each nonzero row has first element 1, called a leading one. The column in which the
leading one appears, called a pivot column, has all other entries zero.

• The pivot columns appear as consecutive initial columns of the identity matrix I . Trail-
ing columns of I might be absent.



RREF Illustration
The matrix (9) below is a typical rref which satisfies the preceding properties. Displayed
secondly is the reduced echelon system (10) in the variables x1, . . . , x8 represented by the
augmented matrix (9). 

1 2 0 3 4 0 5 0 6
0 0 1 7 8 0 9 0 10
0 0 0 0 0 1 11 0 12
0 0 0 0 0 0 0 1 13
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


(9)


x1 + 2x2 +3x4 +4x5 + 5x7 = 6

x3 +7x4 +8x5 + 9x7 = 10
x6 +11x7 = 12

x8 = 13
0 = 0
0 = 0
0 = 0

(10)

Matrix (9) is an rref , because it passes the two checkpoints. The pivot columns 1, 3, 6, 8
appear as the initial 4 columns of the 7× 7 identity matrix I , in natural order; the trailing
3 columns of I are absent.



Frame Sequence Defined

• A sequence of swap, multiply and combination steps applied to a system of equations
is called a frame sequence. Each step consists of exactly one operation.

• The First Frame is the original system and the Last Frame is the reduced echelon
system.

• Frames are documented by the acronyms swap, combo, mult. Arithmetic detail
is suppressed: only results appear.

• The viewpoint is that a camera is pointed over the shoulder of an assistant who writes
the mathematics, and after the completion of each step, a photo is taken. The sequence
of photo frames is the frame sequence. The photo sequence is related to a video of the
events, because it is slide show of certain video frames.

Matrix Frame Sequences
The same terminology applies for systems A~x = ~b represented by an augmented matrix
C = aug(A,~b). The First Frame is C and the Last Frame is rref(C).



A Matrix Frame Sequence Illustration
Steps in a frame sequence can be documented by the notation

swap(s,t), mult(t,m), combo(s,t,c),

each written next to the target row.

During the sequence, initial columns of the identity, called pivot columns, are created as
steps toward the rref , using the three operations mult, swap, combo.

Trailing columns of the identity might not appear. Required is that pivot columns occur as
consecutive initial columns of the identity matrix.



Frame 1:

 1 2 −1 0 1
1 4 −1 0 2
0 1 1 0 1
0 0 0 0 0

 Original augmented matrix.

Frame 2:

 1 2 −1 0 1
0 2 0 0 1
0 1 1 0 1
0 0 0 0 0

 combo(1,2,-1)
Pivot column 1 completed.

Frame 3:

 1 2 −1 0 1
0 1 1 0 1
0 2 0 0 1
0 0 0 0 0

 swap(2,3)

Frame 4:

 1 2 −1 0 1
0 1 1 0 1
0 0 −2 0 −1
0 0 0 0 0


combo(2,3,-2)

Frame 5:

 1 0 −3 0 −1
0 1 1 0 1
0 0 −2 0 −1
0 0 0 0 0

 combo(2,1,-2)
Pivot column 2 completed.

Frame 6:

 1 0 −3 0 −1
0 1 1 0 1
0 0 1 0 1/2
0 0 0 0 0

 mult(3,-1/2)

Frame 7:

 1 0 −3 0 −1
0 1 0 0 1/2
0 0 1 0 1/2
0 0 0 0 0

 combo(3,2,-1)

Last Frame:

 1 0 0 0 1/2
0 1 0 0 1/2
0 0 1 0 1/2
0 0 0 0 0

 combo(3,1,3)
Pivot column 3 completed.
rref found.


