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Unique Solution of a 2× 2 System
The 2× 2 system

ax + by = e,
cx + dy = f,

(1)

has a unique solution provided ∆ = ad − bc is nonzero, in which case the solution is
given by

x =
de− bf
ad− bc

, y =
af − ce
ad− bc

.(2)

This result is called Cramer’s Rule for 2× 2 systems, learned in college algebra.



Determinants of Order 2
College algebra introduces matrix notation and determinant notation:

A =

(
a b
c d

)
, det(A) =

∣∣∣∣ a b
c d

∣∣∣∣ .
Evaluation of det(A) is by Sarrus’ 2× 2 Rule:∣∣∣∣ a b

c d

∣∣∣∣ = ad− bc.

The first product ad is the product of the main diagonal entries and the other product bc is
from the anti-diagonal.
Cramer’s 2× 2 rule in determinant notation is

x =

∣∣∣∣ e b
f d

∣∣∣∣∣∣∣∣ a b
c d

∣∣∣∣, y =

∣∣∣∣ a e
c f

∣∣∣∣∣∣∣∣ a b
c d

∣∣∣∣ .(3)



Relation to Inverse Matrices
System

ax + by = e,
cx + dy = f,

(4)

can be expressed as the vector-matrix systemAu = b where

A =

(
a b
c d

)
, u =

(
x
y

)
, b =

(
e
f

)
.

Inverse matrix theory implies

A−1 =
1

ad− bc

(
d −b
−c a

)
, u = A−1b =

1

ad− bc

(
de− bf
af − ce

)
.

Cramer’s Rule is a compact summary of the unique solution of system (4).



Unique Solution of an n× n System
System

a11x1 + a12x2 + · · · + a1nxn = b1,
a21x1 + a22x2 + · · · + a2nxn = b2,

... ... · · · ... ...
an1x1 + an2x2 + · · · + annxn = bn

(5)

can be written as an n× n vector-matrix equationA~x = ~b, where~x = (x1, . . . , xn)

and ~b = (b1, . . . , bn). The system has a unique solution provided the determinant of
coefficients ∆ = det(A) is nonzero, and then Cramer’s Rule forn×n systems gives

x1 =
∆1

∆
, x2 =

∆2

∆
, . . . , xn =

∆n

∆
.(6)

Symbol ∆j = det(B), where matrix B has the same columns as matrix A, except
col(B, j) = ~b.



Determinants of Order n

Determinants will be defined shortly; intuition from the 2×2 case and Sarrus’ rule should
suffice for the moment.



Determinant Notation for Cramer’s Rule
The determinant of coefficients for systemA~x = ~b is denoted by

∆ =

∣∣∣∣∣∣∣∣
a11 a12 · · · a1n

a21 a22 · · · a2n
... ... · · · ...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣ .(7)

The other n determinants in Cramer’s rule (6) are given by

∆1 =

∣∣∣∣∣∣∣∣
b1 a12 · · · a1n

b2 a22 · · · a2n
... ... · · · ...
bn an2 · · · ann

∣∣∣∣∣∣∣∣ , . . . ,∆n =

∣∣∣∣∣∣∣∣
a11 a12 · · · b1
a21 a22 · · · b2

... ... · · · ...
an1 an2 · · · bn

∣∣∣∣∣∣∣∣ .(8)



College Algebra Definition of Determinant
Given an n× n matrixA, define

det(A) =
∑
σ∈Sn

(−1)parity(σ) a1σ1
· · · anσn

.(9)

In the formula, aij denotes the element in row i and column j of the matrixA. The symbol
σ = (σ1, . . . , σn) stands for a rearrangement of the subscripts 1, 2, . . . , n and Sn is
the set of all possible rearrangements. The nonnegative integer parity(σ) is determined
by counting the minimum number of pairwise interchanges required to assemble the list of
integers σ1, . . . , σn into natural order 1, . . . , n.



College Algebra Deinition and Sarrus’ Rule

For a 3× 3 matrix, the College Algebra formula reduces to Sarrus’ 3× 3 Rule

det(A) =

∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣
= a11a22a33 + a21a32a13 + a31a12a23

−a11a32a23 − a21a12a33 − a31a22a13.

(10)



Diagram for Sarrus’ 3× 3 Rule

The number det(A), in the 3 × 3 case, can be computed by the algorithm in Figure 1,
which parallels the one for 2× 2 matrices. The 5× 3 array is made by copying the first
two rows ofA into rows 4 and 5.

Warning: there is no Sarrus’ rule diagram for 4× 4 or larger matrices!

a23

a12a11

a31 a32 a33

a22a21

a11 a12 a13

c

a21 a22 a23

a13

d

e

f

b

a

Figure 1. Sarrus’ rule diagram for 3× 3 matrices, which gives

det(A) = (a+ b+ c)− (d+ e+ f).



Transpose Rule
A consequence of the college algebra definition of determinant is the relation

det(A) = det(AT)

where AT means the transpose of A, obtained by swapping rows and columns. This
relation implies the following.

All determinant theory results for rows also apply to columns.



How to Compute the Value of any Determinant

• Four Rules. These are the Triangular Rule, Combination Rule, Multiply Rule and the
Swap Rule.

• Special Rules. These apply to evaluate a determinant as zero.

• Cofactor Expansion. This is an iterative scheme which reduces computation of a
determinant to a number of smaller determinants.

• Hybrid Method. The four rules and the cofactor expansion are combined.



Four Rules

Triangular The value of det(A) for either an upper triangular or a lower
triangular matrix A is the product of the diagonal elements:

det(A) = a11a22 · · · ann.

This is a one-arrow Sarrus’ rule.
Swap If B results from A by swapping two rows, then

det(A) = (−1) det(B).

Combination The value of det(A) is unchanged by adding a multiple of a
row to a different row.

Multiply If one row ofA is multiplied by constant c to create matrixB,
then

det(B) = c det(A).



1 Example (Four Properties) Apply the four properties of a determinant to justify
the formula

det

 12 6 0
11 5 1
10 2 2

 = 24.



Solution: Let D denote the value of the determinant. Then

D = det

 12 6 0
11 5 1
10 2 2

 Given.

= det

 12 6 0
−1 −1 1
−2 −4 2

 combo(1,2,-1), combo(1,3,-1). Combination leaves the de-
terminant unchanged.

= 6 det

 2 1 0
−1 −1 1
−2 −4 2

 Multiply rule m = 1/6 on row 1 factors out a 6.

= 6 det

 0 −1 2
−1 −1 1

0 −3 2

 combo(1,3,1), combo(2,1,2).

= −6 det

 −1 −1 1
0 −1 2
0 −3 2

 swap(1,2). Swap changes the sign of the determinant.

= 6 det

 1 1 −1
0 −1 2
0 −3 2

 Multiply rule m = −1 on row 1.

= 6 det

 1 1 −1
0 −1 2
0 0 −4

 combo(2,3,-3).

= 6(1)(−1)(−4) = 24 Triangular rule. Formula verified.



Elementary Matrices and the Four Rules
The four rules can be stated in terms of elementary matrices as follows.

Triangular The value of det(A) for either an upper triangular or a lower
triangular matrix A is the product of the diagonal elements:
det(A) = a11a22 · · · ann. This is a one-arrow Sarrus’ rule
valid for dimension n.

Swap If E is an elementary matrix for a swap rule, then
det(EA) = (−1) det(A).

Combination If E is an elementary matrix for a combination rule, then
det(EA) = det(A).

Multiply If E is an elementary matrix for a multiply rule with multiplier
m 6= 0, then det(EA) = m det(A).

Because det(E) = 1 for a combination rule, det(E) = −1 for a swap rule and
det(E) = c for a multiply rule with multiplier c 6= 0, it follows that for any elementary
matrixE there is the determinant multiplication rule

det(EA) = det(E) det(A).



Special Determinant Rules

The results are stated for rows but also hold for columns, because det(A) = det(AT).

Zero row If one row of A is zero, then det(A) = 0.
Duplicate rows If two rows of A are identical, then det(A) = 0.
RREF 6= I If rref(A) 6= I , then det(A) = 0.
Common factor The relation det(A) = c det(B) holds, provided A and

B differ only in one row, say row j, for which row(A, j) =
c row(B, j).

Row linearity The relation det(A) = det(B) + det(C) holds, pro-
vided A, B and C differ only in one row, say row j, for
which row(A, j) = row(B, j) + row(C, j).



Cofactor Expansion for 3× 3 Matrices
This is a review the college algebra topic, where the dimension ofA is 3.
Cofactor row expansion means the following formulas are valid:

|A| =

∣∣∣∣∣∣
a11a12a13

a21a22a23

a31a32a33

∣∣∣∣∣∣
= a11(+1)

∣∣∣∣a22a23

a32a33

∣∣∣∣+ a12(−1)

∣∣∣∣a21a23

a31a33

∣∣∣∣+ a13(+1)

∣∣∣∣a21a22

a31a32

∣∣∣∣
= a21(−1)

∣∣∣∣a12a13

a32a33

∣∣∣∣+ a22(+1)

∣∣∣∣a11a13

a31a33

∣∣∣∣+ a23(−1)

∣∣∣∣a11a12

a31a32

∣∣∣∣
= a31(+1)

∣∣∣∣a12a13

a22a23

∣∣∣∣+ a32(−1)

∣∣∣∣a11a13

a21a23

∣∣∣∣+ a33(+1)

∣∣∣∣a11a12

a21a22

∣∣∣∣
The formulas expand a 3× 3 determinant in terms of 2× 2 determinants, along a row of A. The attached signs
±1 are called the checkerboard signs, to be defined shortly. The 2 × 2 determinants are called minors of the
3× 3 determinant |A|. The checkerboard sign together with a minor is called a cofactor.



Cofactor Expansion Illustration

Cofactor expansion formulas are generally used when a row has one or two zeros, making
it unnecessary to evaluate one or two of the 2 × 2 determinants in the expansion. To
illustrate, row 1 cofactor expansion gives

∣∣∣∣∣∣
3 0 0
2 1 7
5 4 8

∣∣∣∣∣∣ = 3(+1)

∣∣∣∣ 1 7
4 8

∣∣∣∣+ 0(−1)

∣∣∣∣ 2 7
5 8

∣∣∣∣+ 0(+1)

∣∣∣∣ 2 1
5 4

∣∣∣∣
= 3(+1)(8− 28) + 0 + 0

= −60.

What has been said for rows also applies to columns, due to the transpose formula

det(A) = det
(
AT
)
.



Minor
The (n− 1)× (n− 1) determinant obtained from det(A) by striking out row i and
column j is called the (i, j)–minor ofA and denoted minor(A, i, j). Literature might
useMij for a minor.

Cofactor
The (i, j)–cofactor ofA is cof(A, i, j) = (−1)i+j minor(A, i, j).
Multiplicative factor (−1)i+j is called the checkerboard sign, because its value can be
determined by counting plus, minus, plus, etc., from location (1, 1) to location (i, j) in
any checkerboard fashion.

Expansion of Determinants by Cofactors

det(A) =
n∑
j=1

akj cof(A, k, j), det(A) =
n∑
i=1

ai` cof(A, i, `),(11)

In (11), 1 ≤ k ≤ n, 1 ≤ ` ≤ n. The first expansion is called a cofactor row expansion and the second is
called a cofactor column expansion. The value cof(A, i, j) is the cofactor of element aij in det(A), that is,
the checkerboard sign times the minor of aij .



2 Example (Hybrid Method) Justify by cofactor expansion and the four properties
the identity

det

 10 5 0
11 5 a
10 2 b

 = 5(6a− b).

Solution: Let D denote the value of the determinant. Then

D = det

 10 5 0
11 5 a
10 2 b

 Given.

= det

 10 5 0
1 0 a
0 −3 b

 Combination leaves the determinant unchanged:
combo(1,2,-1), combo(1,3,-1).

= det

 0 5 −10a
1 0 a
0 −3 b

 combo(2,1,-10).

= (1)(−1) det

(
5 −10a
−3 b

)
Cofactor expansion on column 1.

= (1)(−1)(5b− 30a) Sarrus’ rule for n = 2.
= 5(6a− b). Formula verified.



3 Example (Cramer’s Rule) Solve by Cramer’s rule the system of equations

2x1 + 3x2 + x3 − x4 = 1,
x1 + x2 − x4 = −1,

3x2 + x3 + x4 = 3,
x1 + x3 − x4 = 0,

verifying x1 = 1, x2 = 0, x3 = 1, x4 = 2.



Solution: Form the four determinants ∆1, . . . , ∆4 from the base determinant ∆ as follows:

∆ = det

 2 3 1 −1
1 1 0 −1
0 3 1 1
1 0 1 −1

 ,

∆1 = det

 1 3 1 −1
−1 1 0 −1

3 3 1 1
0 0 1 −1

 , ∆2 = det

 2 1 1 −1
1 −1 0 −1
0 3 1 1
1 0 1 −1

 ,

∆3 = det

 2 3 1 −1
1 1 −1 −1
0 3 3 1
1 0 0 −1

 , ∆4 = det

 2 3 1 1
1 1 0 −1
0 3 1 3
1 0 1 0

 .
Five repetitions of the methods used in the previous examples give the answers ∆ = −2, ∆1 = −2, ∆2 = 0,
∆3 = −2, ∆4 = −4, therefore Cramer’s rule implies the solution

x1 =
∆1

∆
, x2 =

∆2

∆
, x3 =

∆3

∆
, x4 =

∆4

∆
.

Then x1 = 1, x2 = 0, x3 = 1, x4 = 2.



Maple Code for Cramer’s Rule
The details of the computation above can be checked in computer algebra system maple
as follows.
with(linalg):
A:=matrix([
[2, 3, 1, -1], [1, 1, 0, -1],
[0, 3, 1, 1], [1, 0, 1, -1]]);
Delta:= det(A);
b:=vector([1,-1,3,0]):
B1:=A: col(B1,1):=b:
Delta1:=det(B1);
x[1]:=Delta1/Delta;



The Adjugate Matrix
The adjugate adj(A) of an n× n matrixA is the transpose of the matrix of cofactors,

adj(A) =


cof(A, 1, 1) cof(A, 1, 2) · · · cof(A, 1, n)
cof(A, 2, 1) cof(A, 2, 2) · · · cof(A, 2, n)

... ... · · · ...
cof(A,n, 1) cof(A,n, 2) · · · cof(A,n, n)


T

.

A cofactor cof(A, i, j) is the checkerboard sign (−1)i+j times the corresponding minor
determinant minor(A, i, j).

Adjugate of a 2× 2

adj
(
a11 a12

a21 a22

)
=

(
a22−a12

−a21 a11

)
In words: swap the diagonal elements and
change the sign of the off–diagonal elements.



Adjugate Formula for the Inverse
For any n× n matrix

A · adj(A) = adj(A) ·A = det(A) I.

The equation is valid even ifA is not invertible. The relation suggests several ways to find
det(A) fromA and adj(A) with one dot product.

For an invertible matrixA, the relation impliesA−1 = adj(A)/ det(A):

A−1 =
1

det(A)


cof(A, 1, 1) cof(A, 1, 2) · · · cof(A, 1, n)
cof(A, 2, 1) cof(A, 2, 2) · · · cof(A, 2, n)

... ... · · · ...
cof(A,n, 1) cof(A,n, 2) · · · cof(A,n, n)


T



Application: Adjugate Shortcut

GivenA =

1−1 2
2 1 0
0 1 1

, then we can compute adj(A) =

 1 3−2
−2 1 4

2−1 3

.

Suppose that we mark some unknown entries in adj(A) by ? and write |A| for det(A).
Then the formulaA adj(A) = adj(A)A = det(A)I becomes

1−1 2
2 1 0
0 1 1

? 3 ?
? 1 ?
?−1 ?

 =

? 3 ?
? 1 ?
?−1 ?

 1 3−2
−2 1 4

2−1 3

 =

|A| 0 0
0 |A| 0
0 0 |A|

 .
While the second product adj(A)A contains useless information, the first product
gives row(A, 2) col(adj(A), 2) = det(A). Because the values are known, then
det(A) = 6 + 1 + 0 = 7.

Knowing A and adj(A) gives the value of det(A) in
one dot product.



Elementary Matrices

Theorem 1 (Determinants and Elementary Matrices)
Let E be an n× n elementary matrix. Then

Combination det(E) = 1

Multiply det(E) = m for multiplier m.
Swap det(E) = −1

Product det(EX) = det(E) det(X) for all n× n matrices X .

Theorem 2 (Determinants and Invertible Matrices)
Let A be a given invertible matrix. Then

det(A) =
(−1)s

m1m2 · · ·mr

where s is the number of swap rules applied andm1,m2, . . . ,mr are the nonzero
multipliers used in multiply rules when A is reduced to rref(A).



Determinant Products
Theorem 3 (Determinant Product Rule)
Let A and B be given n× n matrices. Then

det(AB) = det(A) det(B).

Proof

AssumeA−1 does not exist. ThenA has zero determinant, which implies det(A) det(B) = 0. If det(B) = 0,
then Bx = 0 has infinitely many solutions, in particular a nonzero solution x. Multiply Bx = 0 by A, then
ABx = 0 which implies AB is not invertible. Then the identity det(AB) = det(A) det(B) holds, because
both sides are zero. If det(B) 6= 0 but det(A) = 0, then there is a nonzero y withAy = 0. Define x = B−1y.
Then ABx = Ay = 0, with x 6= 0, which implies AB is not invertible, and as earlier in this paragraph, the
identity holds. This completes the proof when A is not invertible.

Assume A is invertible. In particular, rref(A−1) = I. Write I = rref(A−1) = E1E2 · · ·EkA
−1 for

elementary matrices E1, . . . , Ek. Then A = E1E2 · · ·Ek and

AB = E1E2 · · ·EkB.(12)

The theorem follows from repeated application of the basic identity det(EX) = det(E) det(X) to relation
(12), because

det(AB) = det(E1) · · · det(Ek) det(B) = det(A) det(B).


