An RREF Method for Finding Inverses

An efficient method to find the inverse B of a square matrix A, should it happen to exist, is to form the augmented matrix $C = \text{aug}(A, I)$ and then read off B as the package of the last n columns of $\text{rref}(C)$. This method is based upon the equivalence

$$\text{rref}(\text{aug}(A, I)) = \text{aug}(I, B) \quad \text{if and only if} \quad AB = I.$$
Main Results

Theorem 1 (Inverse Test)
If \(A \) and \(B \) are square matrices such that \(AB = I \), then also \(BA = I \). Therefore, only one of the equalities \(AB = I \) or \(BA = I \) is required to check an inverse.

Theorem 2 (The \texttt{rref} Inversion Method)
Let \(A \) and \(B \) denote square matrices. Then

(a) If \(\text{rref}(\text{aug}(A, I)) = \text{aug}(I, B) \), then \(AB = BA = I \) and \(B \) is the inverse of \(A \).

(b) If \(AB = BA = I \), then \(\text{rref}(\text{aug}(A, I)) = \text{aug}(I, B) \).

(c) If \(\text{rref}(\text{aug}(A, I)) = \text{aug}(C, B) \) and \(C \neq I \), then \(A \) is not invertible.
Finding inverses

The \textbf{rref} inversion method will be illustrated for the matrix

\[
C = \begin{pmatrix}
1 & 0 & 1 \\
0 & 1 & -1 \\
0 & 1 & 1
\end{pmatrix}.
\]

Define the first frame of the sequence to be \(C_1 = \text{aug}(C, I)\), then compute the frame sequence to \text{rref}(C) as follows.
\[C_1 = \begin{pmatrix} 1 & 0 & 1 | & 1 & 0 & 0 \\ 0 & 1 & -1 | & 0 & 1 & 0 \\ 0 & 1 & 1 | & 0 & 0 & 1 \end{pmatrix} \]
First Frame

\[C_2 = \begin{pmatrix} 1 & 0 & 1 | & 1 & 0 & 0 \\ 0 & 1 & -1 | & 0 & 1 & 0 \\ 0 & 0 & 2 | & 0 & -1 & 1 \end{pmatrix} \]
combo(3, 2, -1)

\[C_3 = \begin{pmatrix} 1 & 0 & 1 | & 1 & 0 & 0 \\ 0 & 1 & -1 | & 0 & 1 & 0 \\ 0 & 0 & 1 | & 0 & -1/2 & 1/2 \end{pmatrix} \]
mult(3, 1/2)

\[C_4 = \begin{pmatrix} 1 & 0 & 1 | & 1 & 0 & 0 \\ 0 & 1 & 0 | & 0 & 1/2 & 1/2 \\ 0 & 0 & 1 | & 0 & -1/2 & 1/2 \end{pmatrix} \]
combo(3, 2, 1)

\[C_5 = \begin{pmatrix} 1 & 0 & 0 | & 1 & 1/2 & -1/2 \\ 0 & 1 & 0 | & 0 & 1/2 & 1/2 \\ 0 & 0 & 1 | & 0 & -1/2 & 1/2 \end{pmatrix} \]
combo(3, 1, -1)

Last Frame
The theory

$$rref(\text{aug}(A, I)) = \text{aug}(I, B) \quad \text{if and only if} \quad AB = I$$

implies that the inverse of A is the matrix in the right panel of the last frame

$$C_5 = \begin{pmatrix}
1 & 0 & 0 & 1 & 1/2 & -1/2 \\
0 & 1 & 0 & 0 & 1/2 & 1/2 \\
0 & 0 & 1 & 0 & -1/2 & 1/2
\end{pmatrix}.$$

Then

$$A^{-1} = \begin{pmatrix}
1 & 1/2 & -1/2 \\
0 & 1/2 & 1/2 \\
0 & -1/2 & 1/2
\end{pmatrix}.$$