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Definition of Pure Resonance
The notion of pure resonance in the differential equation

x′′(t) + ω2
0 x(t) = F0 cos(ωt)(1)

is the existence of a solution that is unbounded as t → ∞. We already know that for
ω 6= ω0, the general solution of (1) is the sum of two harmonic oscillations, hence it is
bounded.

Equation (1) for ω = ω0 has by the method of undetermined coefficients the unbounded
oscillatory solution

x(t) =
F0

2ω0

t sin(ω0 t).

Pure resonance occurs exactly when the natural internal frequency ω0

matches the natural external frequency ω, in which case all solutions
of the differential equation are unbounded.



Typical Pure Resonance Graphic
In Figure 1, pure resonance is illustrated for x′′(t) + 16x(t) = 8 cos 4t, which in (1)
corresponds to ω = ω0 = 4 and F0 = 8.
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Figure 1. Pure resonance.
Graphed are the envelope curves x = ±t and the solution x(t) = t sin 4t of the

equation x′′(t) + 16x(t) = 8 cosωt, where ω = 4.



Pure Resonance Explained by Undetermined Coefficients
An initial trial solution of

x′′(t) + 16x(t) = 8 cosωt

is
x = d1 cosωt+ d2 sinωt.

The homogeneous solution xh = c1 cos 4t + c2 sin 4t considered in the correction
rule has duplicate terms exactly when the natural frequencies match: ω = 4. Then the
final trial solution is classified as follows.

ω 6= 4 =⇒ x(t) = d1 cosωt+ d2 sinωt is bounded, no resonance,
ω = 4 =⇒ x(t) = t(d1 cosωt+ d2 sinωt) is unbounded, pure resonance.

Even before the undetermined coefficients d1, d2 are evaluated, we can decide that unbounded solutions occur
exactly when frequency matching ω = 4 occurs, because of the amplitude factor t. If ω 6= 4, then xp(t) is a
pure harmonic oscillation, which implies it is bounded. If ω = 4, then xp(t) equals a time–varying amplitude
Ct times a pure harmonic oscillation, hence it is unbounded.



The Wine Glass Experiment
Equation x′′(t)+ω2

0 x(t) = F0 cos(ωt) is advertised as the basis for a physics exper-
iment in the Public Television Annenberg CPB Project, called the wine glass experiment.
Cal Tech physicist Goodstein, in front of an audience of physics students, equips a lab table with a frequency
generator, an amplifier and an audio speaker. The valuable wine glass is replaced by a glass lab beaker. The
frequency generator is tuned to the natural frequency of the glass beaker (ω ≈ ω0), then the volume knob on
the amplifier is suddenly turned up (F0 adjusted larger), whereupon the sound waves emitted from the speaker
break the glass beaker.

The 29-minute CPB video can be viewed in a browser, no cost. Find it in Resonance #17 at the link below. The
wine glass experiment is the last 4 minutes of the film.

http://www.free-ed.net/free-ed/Science/Physics/
http://www.learner.org/vod/vod_window.html?pid=566

The glass itself will vibrate at a certain frequency, as can be determined experimentally by pinging the glass rim.
This vibration operates within elastic limits of the glass and the glass will not break under these circumstances.
A physical explanation for the breakage is that an incoming sound wave from the speaker is timed to add to the
glass rim excursion. After enough amplitude additions [from 1mm initially to eventually 5mm], the glass rim
moves beyond the elastic limit and the glass breaks.

The explanation implies that the external frequency from the speaker has to match the natural frequency of the
glass. But there is more to it: the glass has some natural damping that nullifies feeble attempts to increase the
glass rim amplitude. The physicist uses to great advantage this natural damping to tune the external frequency
to the glass. The reason for turning up the volume on the amplifier is to nullify the damping effects of the glass.
The amplitude additions then build rapidly as sound wave energy gets stored in the glass, seen as rim vibrations,
and the glass breaks.



Glass at 5mm Rim Excursion, before Breakage

Figure 2. Still image from a wine glass experiment video.

The source for the still image is the wine glass experiment Quicktime video found at Blaze
Labs,

http://www.blazelabs.com/f-p-glass.asp



Soldiers Breaking Cadence
The collapse of the Broughton bridge near Manchester, England in 1831 is blamed for the
now–standard practise of breaking cadence when soldiers cross a bridge.

Bridges like the Broughton bridge have many natural low frequencies of vibration, so it
is possible for a column of soldiers to vibrate the bridge at one of the bridge’s natural
frequencies. The bridge locks onto the frequency while the soldiers continue to add to the
excursions with every step, causing larger and larger bridge oscillations.



Millenium Bridge over The Thames
In 2000, the Millenium Bridge was opened in London, and closed shortly thereafter, due to unusual vibrations
caused by the foot traffic. It was re-opened in 2002 after spending an additional 5 million pounds on bridge
re-design. Read about the bridge here:

http://en.wikipedia.org/wiki/Millennium_Bridge_(London).

Figure 3. London’s Millenium Suspension Footbridge over the Thames.



Definition of Practical Resonance
The notion of pure resonance is easy to understand both mathematically and physically,
because frequency matching characterizes the event. This ideal situation never happens
in the physical world, because damping is always present. In the presence of damping
c > 0, it will be established below that only bounded solutions exist for the forced spring-
mass system

mx′′(t) + cx′(t) + kx(t) = F0 cosωt.(2)

Our intuition about resonance seems to vaporize in the presence of damping effects. But not completely. Most
would agree that the undamped intuition is correct when the damping effects are nearly zero.

Practical resonance is said to occur when the external frequency ω has been tuned to
produce the largest possible solution (a more precise definition appears below). It will be
shown that this happens for the condition

ω =
√
k/m− c2/(2m2), k/m− c2/(2m2) > 0.(3)

Pure resonance ω = ω0 ≡
√
k/m is the limiting case obtained by setting the damping constant c to zero in

condition (3). This strange but predictable interaction exists between the damping constant c and the size of
solutions, relative to the external frequency ω, even though all solutions remain bounded.



Boundedness of the Homogeneous Solution
The decomposition of x(t) into homogeneous solution xh(t) and particular solution
xp(t) gives some intuition into the complex relationship between the input frequency ω
and the size of the solution x(t).

The homogeneous solution. For positive damping, c > 0, equation (2) has homogeneous
solution xh(t) = c1x1(t) + c2x2(t) where according to the recipe the basis elements
x1 andx2 are given in terms of the roots of the characteristic equationmr2+cr+k = 0,
as classified by the discriminantD = c2 − 4mk, as follows:

Case 1, D > 0 x1 = er1t, x2 = er2t with r1 and r2 negative.
Case 2, D = 0 x1 = er1t, x2 = ter1t with r1 negative.
Case 3, D < 0 x1 = eαt cosβt, x2 = eαt sinβt.

Symbols α, β satisfy β > 0 and α = −c/(2m) < 0.

It follows that xh(t) contains a negative exponential factor, regardless of the positive val-
ues ofm, c, k. Then xh(t) is bounded.



Transient Solution
A solution x(t) is called a transient solution provided it satisfies the relation
limt→∞ x(t) = 0. The conclusion:

The homogeneous solution xh(t) of the equation mx′′(t) + cx′(t) +

kx(t) = 0 is a transient solution for all positive values of m, c, k.

A transient solution graphx(t) for large t lies atop the axisx = 0, as in Figure 4, because
limt→∞ x(t) = 0.
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Figure 4. Transient oscillatory solution x = 2e−t(cos t+ sin t) of the differential
equation x′′ + 2x′ + 2x = 0.



Undetermined Coefficients
The method of undetermined coefficients applied to

mx′′ + cx′ + kx = F0 cosωt

gives a trial solution of the form

x(t) = A cosωt+B sinωt

with coefficientsA,B satisfying the equations

(k −mω2)A + (cω)B = F0,
(−cω)A + (k −mω2)B = 0.

(4)

Solving (4) with Cramer’s rule or elimination produces the solution

A =
(k −mω2)F0

(k −mω2)2 + (cω)2
, B =

cωF0

(k −mω2)2 + (cω)2
.(5)



Steady-State Solution and xp
The steady–state solution, periodic of period 2π/ω, is given by

xp(t) =
F0

(k −mω2)2 + (cω)2
(
(k −mω2) cosωt+ (cω) sinωt

)
=

F0√
(k −mω2)2 + (cω)2

cos(ωt− α),
(6)

where α is defined by the phase–amplitude relations

C cosα = k −mω2, C sinα = cω,

C = F0/
√
(k −mω2)2 + (cω)2.

(7)

The terminology steady–state refers to that part xss(t) of the solution x(t) that remains when the transient
portion is removed, that is, when all terms containing negative exponentials are removed. As a result, for large
T , the graphs of x(t) and xss(t) on t ≥ T are the same. This feature of xss(t) allows us to find its graph
directly from the graph of x(t). We say that xss(t) is observable, because it is the solution visible in the graph
after the transients (negative exponential terms) die out.



Practical Resonance
Practical resonance is said to occur when the external frequency ω has been tuned to
produce the largest possible steady–state amplitude. Mathematically, this happens exactly
when the amplitude function C = C(ω) defined in (7) has a maximum. If a maximum
exists on 0 < ω <∞, thenC ′(ω) = 0 at the maximum. The power rule implies

C ′(ω) =
−F0

2

2(k −mω2)(−2mω) + 2c2ω

((k −mω2)2 + (cω)2)3/2

= ω
(
2mk − c2 − 2m2ω2

) C(ω)3

F 2
0

(8)

If 2km−c2 ≤ 0, thenC′(ω) does not vanish for 0 < ω <∞ and hence there is no maximum. If 2km−c2 >
0, then 2km − c2 − 2m2ω2 = 0 has exactly one root ω =

√
k/m− c2/(2m2) in 0 < ω < ∞ and by

C(∞) = 0 it follows that C(ω) is a maximum.

Practical resonance for mx′′(t) + cx′(t) + kx(t) = F0 cosωt oc-
curs precisely when the external frequency ω is tuned to ω =√
k/m− c2/(2m2) and k/m− c2/(2m2) > 0.



Visualization of Practical Resonance
In Figure 5, the amplitude of the steady–state periodic solution is graphed against the ex-
ternal natural frequency ω, for the differential equation x′′ + cx′ + 26x = 10 cosωt
and damping constants c = 1, 2, 3. The practical resonance condition is ω =√
26− c2/2. As c increases from 1 to 3, the maximum point (ω,C(ω)) satisfies

a monotonicity condition: both ω andC(ω) decrease as c increases. The maxima for the
three curves in the figure occur at ω =

√
25.5,

√
24,
√
21.5. Pure resonance occurs

when c = 0 and ω =
√
26.
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Figure 5. Practical resonance for x′′ + cx′ + 26x = 10 cosωt: amplitude
C = 10/

√
(26− ω2)2 + (cω)2 versus external frequency ω for c = 1, 2, 3.


