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Elementary Matrices
Definition. An elementary matrix F is the result of applying a combination, multiply or
swap rule to the identity matrix.

An elementary matrix is then the second frame after a combo, swap or mult toolkit
operation which has been applied to a first frame equal to the identity matrix.

Example:

100
010 First frame = identity matrix.
001

100 Second frame

010 Elementary combo matrix
—5 01 combo (1, 3,-5)



Computer algebra systems and elementary matrices
The computer algebra system maple displays typical 4 X 4 elementary matrices
(C=Combination, M=Multiply, S=Swap) as follows.

with(linalg) : with (LinearAlgebra) :
Id:=diag(1,1,1,1); Id:=TIdentityMatrix (4);
C:=addrow (Id, 2,3,c); | C:=RowOperation (Id, [3,2],cC);
M:=mulrow (Id, 3,m); M:=RowOperation (Id, 3,m);
S:=swaprow (Id,1,4); S:=RowOperation (Id, [4,1]);

The answers:

1 000 1 0 0O
0100 01 0O
S 0 c10]|’ M = 0 0mO |’
0001 00 01
S =

= o oo
S OO
o= OO
S oo+



Constructing elementary matrices E and their inverses E !

Mult Change a one in the identity matrix to symbol m # 0.
Combo Change a zero in the identity matrix to symbol c.
Swap Interchange two rows of the identity matrix.

Constructing E—! from elementary matrix E

Mult Change diagonal multiplier m # 0in Eto 1/m.
Combo Change multiplier cin E to —c.
Swap The inverse of E is FE itself.



Fundamental Theorem on Elementary Matrices

Theorem 1 (Frame sequences and elementary matrices)

In a frame sequence, let the second frame A, be obtained from the first frame
A, by a combo, swap or mult toolkit operation. Let n equal the row dimenson
of A;.Then there is correspondingly an n X n combo, swap or mult elementary
matrix £ such that

Az — EAl.

Theorem 2 (The rref and elementary matrices)
Let A be a given matrix of row dimension nn. Then there exist n X n elementary
matrices F,, E,, ..., E} such that

rref(A) = E; --- E,E, A.



Proof of Theorem 1
The first result is the observation that left multiplication of matrix A by elementary matrix
F gives the answer A, = FE A, which is obtained by applying the corresponding combo,
swap or mult toolkit operation. This fact is discovered by doing examples, then a formal
proof can be constructed (not presented here).

Proof of Theorem 2

The second result applies the first result multiple times to obtain elementary matrices F/;,
E, ... which represent the multiply, combination and swap operations performed in the
frame sequence which take the First Frame A; = A into the Last Frame A;,; =
rref(A;). Combining the identities

A, = E1A19 Az = E2A27 ce oy Ak—l—l = E A,
gives the matrix multiply equation
Ak—|—1 =FE.Ei_q--- E2E1A1

or equivalently the theorem’s result, because A, ; = rref(A) and A; = A.



A certain 6-frame sequence

12 3

A=\ 2 4 0 Frame 1, original matrix.
3 6 3
12 3

A= 0 0 —6 Frame 2, combo(1,2,-2).
3 6 3
1 2 3

A3=| 0 0 1 Frame 3, mult(2,-1/6).
3 6 3
12 3

Ag=|1 00 1 Frame 4, combo(1,3,-3).
0 0 —6
1 2 3

As=| 0 0 1 Frame 5, combo(2,3,-6).
0 00O
1 20

Ag=1| 0 0 1 Frame 6, combo(2,1,-3). Found rref(A;).
00O



Continued

The corresponding 3 X 3 elementary matrices are

N ~ —

W o

o o = o O =

o = W S = O o = O

—

oo =OOo

Frame 2, combo(1,2,-2) applied to I.

Frame 3, mult(2,-1/6) applied to I.

Frame 4, combo(1,3,-3) applied to I.

Frame 5, combo(2,3,-6) applied to I.

Frame 6, combo(2,1,-3) applied to I.



Frame Sequence Details

A, = E, A, Frame 2, E/; equals combo(1,2,-2) on 1.
A; = FE,A, Frame 3, E, equals mult(2,-1/6) on 1.
A, = E;A, Frame 4, E5 equals combo(1,3,-3) on 1.
As = E,A, Frame 5, E/, equals combo(2,3,-6) on 1.
Ag = E;A; Frame 6, E5 equals combo(2,1,-3) on 1.
A¢ = EsE,EsE,E,A;  Summary frames 1-6.

Then

rref(Al) = E5E4E3E2E1A1,

which is the result of the Theorem.



Fundamental Theorem Illustrated

The summary:
1-30\/1 00 100\ /1 00 100
A¢=(0 10|l0 10 010|(o—%0|[—-210] Ay
o0 o1/\o—-61/\—-301/\0 01 001

Because Ag = rref(A;), the above equation gives the inverse relationship

A, = E'E;'E;'E['E; ' rref(A,)).

Each inverse matrix is simplified by the rules for constructing ! from elementary matrix
E, the result being

100 1 00 100 100 130
A3 =1210]]0-60 010|(010|(010 | rref(A;)
001 0 01 301 061 001



Theorem 3 (RREF Inverse Method)
rref(aug(A,I)) = aug(l,B) ifandonlyif AB = 1I.

Proof: For any matrix E there is the matrix multiply identity
E aug(C, D) = aug(EC, ED).

This identity is proved by arguing that each side has identical columns. For example, col(LHS,1) =
E col(C,1) = col(RHS, 1).

Assume C' = aug(A, I) satisfies rref(C) = aug(I, B). The fundamental theorem of elementary matrices
implies Ey, - - - E1C = rref(C). Then

rref(C) = aug(Ey -+ E1A,Ey - -+ E1I) = aug(I, B)
implies that E --- F1A = I and Ey - - - E1I = B. Together, BA = I and then B is the inverse of A.
Conversely, assume that AB = I. Then A has inverse B. The fundamental theorem of elementary matri-

ces implies the identity Ef--- E1A = rref(A) = I. It follows that B = Ej--- E;. Then rref(C) =
Ey---FEyaug(A,I) =aug(Eg---E1A,Ey--- E11) = aug(I, B).



