Undetermined Coefficients The Trial Solution Method

- Definition of Solution Atom
- Undetermined Coefficients Trial Solution Method
- Symbols
- Superposition
- The Trial Solution with Fewest Atoms
- Two Rules
 - Rule I
 - Rule II
- Illustrations

Definition of Solution Atom

A solution atom of a linear constant-coefficient homogeneous differential equation is briefly called an atom. The set of atoms is generated from base atoms and powers of x.

A base atom is one of the terms 1, $\cos bx$, $\sin bx$, e^{ax} , $e^{ax} \cos bx$, $e^{ax} \sin bx$. An atom equals x^n times a base atom, for $n = 0, 1, 2, 3 \dots$

Examples.

The following are atoms: e^{2x} , $e^{e^{2x}}$, $xe^{-\pi x}$, e^{0x} or $1, x, x^2$, $\cos x, \cos \pi x, e^{-x} \sin 2x$, $x^6 \sin 100x$, $x^2 e^{-5x}$, $x^5 e^{-5x} \cos 5x$, 2^x [equals e^{ax} with $a = \ln 2$], any power x^n with integer $n \ge 0$.

The following are not atoms: 2, x^{-1} , $\ln |x|$, e^{x^2} , $\tan x$, $\sinh x$, $\sec x$, $\csc x$, $\sin^2 x$, $\sin(x^2)$, $e^x \cos(2x+2)$, $\cot x$, $\frac{x}{1+x}$.

Step 1. Find a trial solution y by Rule I.

Rule I. Assume the right side f(x) of the differential equation is a linear combination of atoms. Make a list of all distinct atoms that appear in the derivatives f(x), f'(x), f''(x), Multiply these k atoms by undetermined coefficients d_1, \ldots, d_k , then add to define a trial solution y.

Warning: Rule I can **Fail**. It fails exactly when one of the atoms is a solution of the homogeneous differential equation. Apply Rule II *infra*, in case of failure of Rule I, to define trial solution y.

- **Step 2**. Substitute trial solution y into the differential equation. The resulting equation is a competition between two linear combinations of the k atoms in the list.
- **Step 3**. Linear independence of atoms implies matching of coefficients of atoms left and right. Write out linear algebraic equations for unknowns d_1 , d_2 , ..., d_k . Solve the equations.
- **Step 4**. The trial solution y with evaluated coefficients d_1, d_2, \ldots, d_k becomes the particular solution y_p .

Rule I Failure

Example. The differential equation $y'' = x + e^x$ has by Rule I a trial solution $y = d_1(1) + d_2(x) + d_3(e^x)$ obtained from the list of k = 3 atoms 1, x, e^x . The trial solution fails to work, because upon substitution of y into the differential equation the resulting equation is

$$d_1(1)''+d_2(x)''+d_3(e^x)''=0(1)+1(x)+1(e^x).$$

This equation cannot be satisfied by choosing values of d_1 , d_2 , d_3 , because it reads

$$x + (1 - d_3)e^x = 0,$$

implying that x, e^x are *dependent*, a violation of the *Independence of Atoms Theorem*.

The actual trouble is a deeper problem. The equations (1)'' = 0 and (x)'' = 0 imply that 1 and x are solutions of the homogeneous differential equation y'' = 0. These equations cause constants d_1 , d_2 to be **completely absent** from the system of equations. The constants d_1 , d_2 , d_3 must be uniquely determined. A variable that is absent in a linear system is a free variable, causing non-uniqueness, and this is the root of the problem.

Symbols

The symbols c_1 , c_2 are reserved for use as arbitrary constants in the general solution y_h of the homogeneous equation. For example, the homogeneous equation y'' + y = 0 has general solution $y = c_1 \cos x + c_2 \sin x$.

Symbols d_1, d_2, d_3, \ldots are reserved for use in the trial solution y of the non-homogeneous equation. For example, the equation $y'' + y = x + e^x$ has by Rule I trial solution $y = d_1(1) + d_2(x) + d_3(e^x)$.

Abbreviations

- c = constant = arbitrary constant,
- d = determined constant.

Superposition

The relation $y = y_h + y_p$ suggests solving ay'' + by' + cy = f(x) in two stages:

- (a) Find y_h as a linear combination of atoms computed by applying Euler's theorem to factors of the characteristic polynomial $ar^2 + br + c$.
- (b) Apply the **the method of undetermined coefficients** to find y_p .

Remarks

We expect to find two arbitrary constants c_1 , c_2 in the solution y_h , but in contrast, no arbitrary constants appear in y_p .

Calling d_1, d_2, d_3, \dots undetermined coefficients is misleading, because in fact they are eventually *determined*.

The Trial Solution with Fewest Atoms

Undetermined coefficient theory computes a **shortest possible trial solution**, a solution with **fewest atoms**.

Using the fewest atoms minimizes the size of the linear algebra problem for the constants d_1, \ldots, d_k . A deeper property of using the fewest atoms possible is that constants d_1, \ldots, d_k are *uniquely determined*.

Example. $y'' + y = x^2$

The atom list for $f(x) = x^2$ is 1, x, x^2 . Rule I computes a shortest trial solution $y = d_1 + d_2x + d_3x^2$. The linear algebra problem is 3×3 , and no smaller system of equations can be found.

The Rules for Undetermined Coefficients

Rule I. Assume the right side f(x) of the differential equation is a linear combination of atoms. Make a list of all distinct atoms that appear in the derivatives f(x), f'(x), f''(x), Multiply these k atoms by **undetermined coefficients** d_1, \ldots, d_k , then add to define a **trial solution** y.

This rule **FAILS** if one or more of the k atoms is a solution of the homogeneous differential equation.

Rule II. If Rule I **FAILS**, then break the k atoms into groups with the same **base atom**. Cycle through the groups, replacing atoms as follows. If the first atom in the group is a solution of the homogeneous differential equation, then multiply all atoms in the group by factor x. Repeat until the first atom is not a solution of the homogeneous differential equation. Multiply the constructed k atoms by symbols d_1, \ldots, d_k and add to define trial solution y.

An Illustration

Assume the constant-coefficient differential equation has order 2 and the trial solution from Rule I uses the seven (7) atoms

 $e^{2x}, \, xe^{2x}, \, x^2e^{2x}, \, x^3e^{2x}, \cos x, \sin x, e^x.$

Break the 7 atoms into 4 groups, each group with the same base atom.

Group	Atoms	Base Atom
1	$e^{2x},xe^{2x},x^2e^{2x},x^3e^{2x}$	e^{2x}
2	$\cos x$	$\cos x$
3	$\sin x$	$\sin x$
4	e^x	e^x

Example 1

Assume second order homogeneous differential equation has characteristic equation

$$(r-1)(r-3) = 0.$$

Then e^{2x} , $\cos x$, $\sin x$ are **not** solutions of the homogeneous equation, but e^x is a solution. The solution atom e^{3x} of the homogeneous equation is not used in the trial solution construction.

Rule I fails because the Group 4 atom e^x is a solution of the homogeneous equation. The other groups do not contain solutions of the homogeneous differential equation. **Rule II applies** to give one new group and three unchanged groups. The trial solution y is a linear combination of the 7 atoms.

Group	Atoms
1	$e^{2x},xe^{2x},x^2e^{2x},x^3e^{ex}$
2	$\cos x$
3	$\sin x$
New 4	xe^x

Details. Atom xe^x is a solution of the homogeneous equation if and only if 1 is a double root of the characteristic equation; it isn't, which stops the multiplication by x in Group 4.

Example 2

Assume second order homogeneous differential equation has characteristic equation

$$(r-1)(r-2) = 0.$$

Then e^x , e^{2x} are solutions of the homogeneous equation, but $\cos x$, $\sin x$ are not solutions.

Rule I fails because the Group 1 atom e^{2x} is a solution of the homogeneous equation. **Rule II applies** to give two new groups and two unchanged groups. The trial solution y is a linear combination of the 7 atoms.

Group	Atoms
New 1	$[xe^{2x},x^2e^{2x},x^3e^{2x},x^4e^{ex}]$
2	$\cos x$
3	$\sin x$
New 4	$oldsymbol{x}oldsymbol{e}^x$

Details. Atom xe^{2x} is a solution of the homogeneous equation if and only if 2 is a double root of the characteristic equation; it isn't, which stops the multiplication by x in Group 1.

Atom xe^x is a solution of the homogeneous equation if and only if 1 is a double root of the characteristic equation; it isn't, which stops the multiplication by x in Group 4.