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Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is

expected. Details count 3/4, answers count 1/4.

4. (Determinants) Do all parts.
(a) [20%] State four different determinant rules for n x ri matrices.

(b) [20%] Assume given 3 x 3 matrices A, B. Suppose AB =E3E2E,A and E,, E2, E3 are elementary

matrices representing respectively a swap, a combination, and a multiply by —1/3. Assume det(A) = 13.

Find det(2B).
(c) [20%] Determine all values of x for which B’ fails to exist, where B equals the transpose of the

matrlx(
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3x 0 1001

1 x—1 7 0
x4 x3 x2

(d) [40%] Apply the adjugate [adjointj formula for the inverse to find the value of the entry in row 3,
column 4 of A’, given A below. Other methods are not acceptable.
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Use this page to start your solution. Attach extra pages as needed.
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5. (Linear Differentia’ Equations) Do all parts.
(a) [20%] Solve for the general solution of 12y” + 7y’ + y = 0.
(b) [40%] The characteristic equation is r2(2r — 3)2(r2 — 2r + 5) = 0. Find the general solution y of the
linear homogeneous constant-coefficient differential equation.
(c) [20%] A third order linear homogeneous differential equation with constant coefficients has two
particular solutions 2e3x + 4 sin 2x and What are the roots of the characteristic equation?
(d) [20%] Circle the functions which can be a solution of a linear homogeneous differential equation
with constant coefficients. For example, you would circle cos2 x because cos2 x = ± cos(2x) is a linear
combination of the two solutions 1 and cos(2x) of a third order equation whose characteristic equation
has roots 0, 2i, —2i.
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Use this page to start your solution. Attach extra pages as needed.


