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2.3 Linear Equations I

An equation y′ = f(x, y) is called first-order linear or a linear equa-
tion provided it can be rewritten in the special form

y′ + p(x)y = r(x)(1)

for some functions p(x) and r(x). In most applications, p and r are
assumed to be continuous. The function p(x) is called the coefficient
of y. The function r(x) (r abbreviates right side) is called the non-
homogeneous term or the forcing term. Engineering texts call r(x)
the input and the solution y(x) the output.

A practical test:

An equation y′ = f(x, y) with f continuously differentiable
is linear provided fy(x, y) is independent of y.

Form (1) is obtained by defining r(x) = f(x, 0) and p(x) = −fy(x, y).
Two examples:

Ly′ + Ry = E The LR-circuit equation with p(x) = R/L and
r(x) = E/L. Symbols L, R and E are respectively
inductance, resistance and electromotive force.

y′ = −h(y − y1) Newton’s cooling equation with p(x) = h and
r(x) = hy1. Oven temperature y1 and meat ther-
mometer reading y(t) appear in the roast model.

Classifying Linear Equations

Algebraic complexity may make an equation y′ = f(x, y) appear to be
non-linear, e.g., y′ = (sin2(xy) + cos2(xy))y simplifies to y′ = y.

Computer algebra systems classify an equation y′ = f(x, y) as linear
provided the identity f(x, y) = f(x, 0) + fy(x, 0)y is valid. Equivalently,
f(x, y) = r(x) − p(x)y, where r(x) = f(x, 0) and p(x) = −fy(x, y).
Automatic simplifications in computer algebra systems make this test
practical. Hand verification can use the same method.

Elimination of an equation y′ = f(x, y) from the class of linear equations
can be done from necessary conditions. The equality fy(x, y) = fy(x, 0)
implies two such conditions:

1. If fy(x, y) depends on y, then y′ = f(x, y) is not linear.

2. If fyy(x, y) 6= 0, then y′ = f(x, y) is not linear.

For instance, either condition implies y′ = 1 + y2 is not linear.
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Variation of Parameters and Integrating Factors

The initial value problem

y′ + p(x)y = r(x), y(x0) = 0,(2)

where p and r are continuous in an interval containing x = x0, has an
explicit solution (justified on page 90)

y(x) =
(

y0 +
∫ x

x0

r(t)e
∫ t

x0
p(s)ds

dt

)
e
−
∫ x

x0
p(s)ds

.(3)

Formula (3) is called variation of parameters, for historical reasons.
While (3) has some appeal, applications use the integrating factor
method below, which is developed with indefinite integrals for compu-
tational efficiency. No one memorizes (3); they remember and study the
method. See Example 11, page 88, for technical details.

Integrating Factor Identity

The technique called the integrating factor method uses the replace-
ment rule (justified on page 90)

Fraction
(Y W )′

W
replaces Y ′ + p(x)Y, where W = e

∫
p(x)dx.(4)

The factor W = e
∫

p(x)dx in (4) is called an integrating factor.

The Integrating Factor Method

Standard
Form

Rewrite y′ = f(x, y) in the form y′ + p(x)y = r(x)
where p, r are continuous. The method applies only in
case this is possible.

Find W Find a simplified formula for W = e
∫

p(x)dx. The an-
tiderivative

∫
p(x)dx can be chosen conveniently.

Prepare for
Quadrature

Obtain the new equation
(yW )′

W
= r by replacing the

left side of y′ + p(x)y = r(x) by equivalence (4).

Method of
Quadrature

Clear fractions to obtain (yW )′ = rW . Apply the
method of quadrature to get yW =

∫
r(x)W (x)dx +

C. Divide by W to isolate the explicit solution y(x).

In identity (4), functions p, Y and Y ′ are assumed continuous with p and
Y arbitrary functions. The integral

∫
p(x)dx equals P (x)+C, where P (x)

is some anti-derivative of p(x). Because e
∫

p(x)dx = eP (x)eC , then factor
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eC divides out of the fraction in (4). Applications therefore simplify
the integrating factor e

∫
p(x)dx to eP (x), where P (x) is any suitable

antiderivative of p(x) (effectively, we take C = 0).

Equation (4) is central to the method, because it collapses the two terms
y′ + py into a single term (Wy)′/W ; the method of quadrature applies
to (Wy)′ = rW . The literature calls the exponential factor W an inte-
grating factor and equivalence (4) a factorization of Y ′ + p(x)Y .

Simplifying an integrating factor. Factor W is simplified by drop-
ping constants of integration. To illustrate, if p(x) = 1/x, then

∫
p(x)dx =

ln |x| + C. The algebra rule eA+B = eAeB implies that W = eCeln |x| =
|x|eC = (±eC)x. Let c1 = ±eC . Then W = c1W1 where W1 = x.
The fraction (Wy)′/W reduces to (W1y)′/W1, because c1 cancels. In an
application, we choose the simpler expression W1. The illustration also
shows that the exponential in W can sometimes be eliminated.

Superposition

Formula (3) can be decomposed into two expressions, called yh and yp,
so that the general solution is expressed as y = yh + yp. The function
yh solves the homogeneous equation y′ + p(x)y = 0 and yp solves the
non-homogeneous equation y′+ p(x)y = r(x). This observation is called
the superposition principle.

Equation (3) implies the homogeneous solution yh and a particular
solution y∗p can be defined by

yh = y0e
−
∫ x

x0
p(s)ds

, y∗p =
(∫ x

x0

r(t)e
∫ t

x0
p(s)ds

dt

)
e
−
∫ x

x0
p(s)ds

.(5)

Verification amounts to setting r = 0 in (3) to determine yh. The solution
y∗p depends on the forcing term r(x), but yh does not. Initial conditions
of a problem are buried in yh. Experimentalists view the computation
of y∗p as a single experiment in which the state y∗p is determined by the
forcing term r(x) and zero initial data y = 0 at x = x0.

Structure of Solutions

Formula (3), proved on page 90, directly establishes existence for the
solution to the linear initial value problem (2). The proof also determines
what other particular solutions might be used in the formula for a general
solution:

Theorem 3 (Solution Structure)
Assume p(x) and r(x) are continuous on a < x < b and a < x0 < b. Let yh

and y∗p be defined by equation (5). Let y be a solution of y′+ p(x)y = r(x)
on a < x < b. Then y can be decomposed as y = yh+y∗p, where y0 = y(x0).
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In short, a linear equation has the solution structure homogeneous plus
particular. Two solutions of the non-homogeneous equation therefore
differ by some solution yh of the homogeneous equation.

Examples

11 Example (Integrating Factor Method) Solve 2y′ + 6y = e−x.

Solution: The solution is y = 1
4e−x + ce−3x. An answer check appears in

Example 13. The details:

y′ + 3y = 0.5e−x Divide by 2 to get the standard form.

W = e3x Find the integrating factor W = e
∫

3dx.(
e3xy

)′
e3x

= 0.5e−x Replace the LHS of y′ + 3y = 0.5e−x by the
integrating factor quotient; see page 86.(

e3xy
)′ = 0.5e2x Clear fractions. Prepared for quadrature

e3xy = 0.5
∫

e2xdx Method of quadrature applied.

y = 0.5
(
e2x/2 + c1

)
e−3x Evaluate the integral. Divide by W = e3x.

= 1
4e−x + ce−3x Final answer, c = 0.5c1.

12 Example (Superposition) Find a particular solution of y′+ 2y = 3ex with
fewest terms.

Solution: The answer is y = ex. The first step solves the equation using the
integrating factor method, giving y = ex + ce−2x; details below. A particular
solution with fewest terms, y = ex, is found by setting c = 0. The solution y∗p
of equation (5) has two terms: y∗p = ex − e3x0e−2x. The reason for the extra
term is the condition y = 0 at x = 0. The two particular solutions differ by the
homogeneous solution y0e

−2x where y0 = e3x0 .

Integrating factor method details:

y′ + 2y = 3ex The standard form.

W = e2x Find the integrating factor W = e
∫

2dx.(
e2xy

)′
e3x

= 3ex Integrating factor identity applied to y′ + 2y = 3ex.

e2xy = 3
∫

e3xdx Clear fractions and apply quadrature.

y =
(
e3x + c

)
e−2x Evaluate the integral. Isolate y.

= ex + ce−2x Solution found.

13 Example (Answer Check) Show the answer check details for 2y′ + 6y =
e−x and candidate solution y = 1

4e−x + ce−3x.

Solution: Details:
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LHS = 2y′ + 6y Left side of the equation
2y′ + 6y = e−x.

= 2(− 1
4e−x − 3ce−3x) + 6( 1

4e−x + ce−3x) Substitute for y.

= e−x + 0 Simplify terms.

= RHS DE verified.

14 Example (Finding yh and yp) Find the homogeneous solution yh and a
particular solution yp for the equation 2xy′ + y = 4x2 on x > 0.

Solution: The solution by the integrating factor method is y = 0.8x2 +cx−1/2;
details below. Then yh = cx−1/2 and yp = 0.8x2 give y = yh + yp.

The symbol yp stands for any particular solution. It should be free of any
arbitrary constants c.

Variation of parameters gives a different particular solution y∗p = 0.8x2 −
0.8x

5/2
0 x−1/2. It differs from the other particular solution 0.8x2 by a homo-

geneous solution Kx−1/2.

Integrating factor method details:

y′ + 0.5y/x = 2x Standard form. Divided by 2x.

W = e0.5
∫

dx/x The integrating factor is W = e
∫

p.

= e0.5 ln x Simplify the integration constant.

= x1/2 Used ln un = n ln u. Simplified W found.(
x1/2y

)′
x1/2

= 2x Integrating factor identity applied on the left.

x1/2y = 2
∫

x3/2dx Clear fractions. Apply quadrature.

y =
(
4x5/2/5 + c

)
x−1/2 Evaluate the integral. Divide to isolate y.

= 4x2 + cx−1/2 Solution found.

15 Example (Classification) Classify the equation y′ = x + ln (xey) as linear
or non-linear.

Solution: It’s linear, with standard linear form y′ + (−1)y = x + ln x. To
explain why, the term ln (xey) on the right expands into ln x + ln ey, which in
turn is ln x + y, using logarithm rules. Because ey > 0, then ln(xey) makes
sense for only x > 0. Henceforth, assume x > 0.

Computer algebra test f(x, y) = f(x, 0) + fy(x, 0)y. Expected is LHS −
RHS = 0 after simplification. This example produced ln ey − y instead of 0,
evidence that limitations may exist.

assume(x>0):
f:=(x,y)->x+ln(x*exp(y)):
LHS:=f(x,y):
RHS:=f(x,0)+subs(y=0,diff(f(x,y),y))*y:
simplify(LHS-RHS);
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If the test passes, then y′ = f(x, y) becomes y′ = f(x, 0) + fy(x, 0)y. This
example gives y′ = x + ln x + y, which converts to the standard linear form
y′ + (−1)y = x + ln x.

Details and Proofs

Justification of Formula (3): Define

Q(x) = e
−
∫ x

x0
p(s)ds

, R(x) =
∫ x

x0

r(t)
Q(t)

dt.

The calculus rule (eu)′ = u′eu and the fundamental theorem of calculus result
(
∫ x

x0
G(t)dt)′ = G(x) can be used to obtain the formulas

Q′ = (−p)Q, R′ =
r

Q
.

Existence. Equation (3) is y = Q(y0 +R). Existence will be established by
showing that y satisfies y′+py = r, y(x0) = y0. The initial condition y(x0) = y0

follows from Q(x0) = 1 and R(x0) = 0. The steps below verify y′ + py = r,
completing existence.

y′ = [Q(y0 +R)]′ Equation (3), using notation Q and R.

= Q′(y0 +R) +QR′ Sum and product rules applied.

= −pQ(y0 +R) +QR′ Used Q′ = (−p)Q.

= −pQ(y0 +R) + r Used R′ = r/Q.

= −py + r Apply y = Q(y0 +R).

Uniqueness. It remains to show that the solution given by (3) is the only
solution. Start by assuming Y is another, subtract them to obtain u = y − Y .
Then u′ + pu = 0, u(x0) = 0. To show y ≡ Y , it suffices to show u ≡ 0.

According to the integrating factor method, the equation u′ + pu = 0 is equiv-
alent to (uW )′ = 0 where W = eP and P(x) =

∫ x

x0
p(t)dt. Integrate (uW )′ = 0

from x0 to x, giving u(x)W (x) = u(x0)W (x0). Since u(x0) = 0 and W (x) 6= 0,
it follows that u(x) = 0 for all x. This completes the proof.

Remarks on Picard’s Theorem. The Picard-Lindelöf theorem, page 62,
implies existence-uniqueness, but only on a smaller interval, and furthermore
it supplies no practical formula for the solution. Formula (3) is therefore an
improvement over the results obtainable from the general theory.

Justification of Factorization (4): It is assumed that Y (x) is a given but
otherwise arbitrary differentiable function. Equation (4) will be justified in its
fraction-free form(

Y eP
)′

= (Y ′ + pY ) eP, P(x) =
∫

p(x)dx.(6)

LHS =
(
Y eP

)′
The left side of equation (6).
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= Y ′eP +
(
eP
)′

Y Apply the product rule (uv)′ = u′v + uv′.

= Y ′eP + pePY Use the chain rule (eu)′ = u′eu and P′ = p.

= (Y ′ + pY ) eP The common factor is eP.

= RHS The right hand side of equation (6).

Exercises 2.3

Integrating Factor Method. Apply
the integrating factor method, page
86, to solve the given linear equation.
See the examples starting on page 88
for details.

1. y′ + y = e−x

2. y′ + y = e−2x

3. 2y′ + y = e−x

4. 2y′ + y = e−2x

5. 2y′ + y = 1

6. 3y′ + 2y = 2

7. 2xy′ + y = x

8. 3xy′ + y = 3x

9. y′ + 2y = e2x

10. 2y′ + y = 2ex/2

11. y′ + 2y = e−2x

12. y′ + 4y = e−4x

13. 2y′ + y = e−x

14. 2y′ + y = e−2x

15. 4y′ + y = 1

16. 4y′ + 2y = 3

17. 2xy′ + y = 2x

18. 3xy′ + y = 4x

19. y′ + 2y = e−x

20. 2y′ + y = 2e−x

Superposition. Find a particular so-
lution with fewest terms. See Example
12, page 88.

21. 3y′ = x

22. 3y′ = 2x

23. y′ + y = 1

24. y′ + 2y = 2

25. 2y′ + y = 1

26. 3y′ + 2y = 1

27. y′ − y = ex

28. y′ − y = xex

29. xy′ + y = sin x (x > 0)

30. xy′ + y = cos x (x > 0)

31. y′ + y = x− x2

32. y′ + y = x + x2

General Solution. Find yh and a par-
ticular solution yp. Report the general
solution y = yh + yp. See Example 14,
page 89.

33. y′ + y = 1

34. xy′ + y = 2

35. y′ + y = x

36. xy′ + y = 2x

37. y′ − y = x + 1

38. xy′ − y = 2x− 1

39. 2xy′ + y = 2x2 (x > 0)

40. xy′ + y = 2x2 (x > 0)
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Classification. Classify as linear or
non-linear. Use the test f(x, y) =
f(x, 0) + fy(x, 0)y and a computer al-
gebra system, when available, to check
the answer. See Example 15, page 89.

41. y′ = 1 + 2y2

42. y′ = 1 + 2y3

43. yy′ = (1 + x) ln ey

44. yy′ = (1 + x) (ln ey)2

45. y′ sec2 y = 1 + tan2 y

46. y′ = cos2(xy) + sin2(xy)

47. y′(1 + y) = xy

48. y′ = y(1 + y)

49. xy′ = (x + 1)y − xeln y

50. 2xy′ = (2x + 1)y − xye− ln y

Proofs and Details.

51. Prove directly without appeal to
Theorem 3 that the difference of
two solutions of y′ + p(x)y = r(x)
is a solution of the homogeneous
equation y′ + p(x)y = 0.

52. Prove that y∗p given by equation
(5) and yp = Q−1

∫
r(x)Q(x)dx

given in the integrating factor
method are related by yp = y∗p+yh

for some solution yh of the homo-
geneous equation.

53. Let Q′ = 1 + x and define y =
Q−1

∫
exQ(x)dx. Show directly,

without appeal to theorems of this
section, that y′ + (1 + x)y = ex.

54. Let Q′ = x ln(1 + x2) and de-
fine y = Q−1

∫
x2Q(x)dx. Show

directly, without appeal to the-
orems of this section, that y′ +
x ln(1 + x2)y = x2.


