
EXAMPLE:

A Non-Oscillating Second-Order System

The Problem

The figure shows two plates which can slide horizontally relative to one an-
other. We wish to find a mathematical model for the motions of each of the
two plates, solve it, and verify non-oscillation from the model.

Figure. A mechanical system with two movable plates.



Assumptions and Notation

• The plates are rigid.

• The plates have masses m1, m2.

• Only horizontal motion is considered. Then each plate may be repre-
sented by an ideal inertia.

• The plate velocities will be denoted v1, v2.

• Assume two sources of energy dissipation: (1) linear friction b1(velocity)
due to the motion of the top plate relative to the bottom and (2) linear
friction b2(velocity) due to the motion of the bottom plate relative to
ground.



Differential Equation Model

m1

dv1

dt
= −(b1v1 + b2(v1 − v2))

m2

dv2

dt
= b2(v1 − v2)

Derivation Detail.

Velocity v3 = v1 − v2 is the relative velocity between the two plates. It
appears twice in the above equations, which are just Newton’s second law on
the left and the sum of the frictional forces on the right. Signs are determined
by physics-style vector diagrams, or by mechanical engineering bond graphs.



Matrix Differential Equation Models

The velocity model is a translation of the scalar equations above into a
first order matrix differential system of the form

Mx′(t) = Bx(t).

Symbol M is the mass matrix and B is the coefficient matrix.
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The distance model translates via equations v1 = dx1/dt, v2 = dx2/dt
into the second order matrix differential system
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
which has the symbolic form

x′′ = Ax.



Distance Model Solution and Non-Oscillation

The model can be solved explicitly, using a computer algebra system like
Mathematica or Maple. Here’s the Maple code:

de1:=diff(x1(t),t,t)=-(b1+b2)/m1*diff(x1(t),t)+b2/m1*diff(x2(t),t);

de2:=diff(x2(t),t,t)=b2/m2*diff(x1(t),t)-b2/m2*diff(x2(t),t);

dsolve({de1,de2},{x1(t),x2(t)});

The answer is especially complicated, so we remove the mystery by choosing
b1/m1 = 1 and b2/m2 = 2, which gives an answer similar to all others
possible. Below, λ1 = (−5 +

√
17)/2, λ2 = −(5 +

√
17)/2, which are

both negative numbers.
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Both x1(t), x2(t) have a constant limit at t = ∞, therefore they don’t
oscillate. A typical plot of x1(t), x2(t) appears in the next figure.



Distance Model Component Plot

In the figure, the components have been specialized to
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These equations are the result of choosing all constants C1 to C4 equal to
1. The plot shows the non-oscillation of the components x1, x2.

Figure. Component plot for the movable plate problem.


