Separable Differential Equations

- Separable Equation and the Separable Form
- ullet Compute F and G in Relation f(x,y)=F(x)G(y)
- Theorem: Separability Test
- Non-Separability Tests: Test I and Test II
- Illustration $y' = xy + y^2$.
- Variables-Separable Method
 - Equilibrium Solutions
 - Non-Equilibrium Solutions
 - * preparation for quadrature
 - * method of quadrature
 - * Explicit and Implicit Solutions
 - The General Solution of $y^\prime=2x(y-3)$
- Answer Checks: Explicit Solution and Implicit Solution.

Definition (Separable Equation). An equation y'=f(x,y) is called separable provided there exists functions F(x) and G(y) such that

$$f(x,y) = F(x)G(y).$$

Definition (Separated Form of a Separable Equation). The equation

$$rac{y'}{G(y)} = F(x).$$

is called the **separated form**. It is obtained from the separable equation y' = F(x)G(y) by dividing by G(y).

Such an equation is said to be *prepared for quadrature*, because the left side is independent of x and the right side is independent of y, y'.

Finding a Separable Form

The algorithm supplied here determines F and G such that f(x,y) = F(x)G(y). The algorithm also applies to **prove** that an equation is **not separable**.

Algorithm. Given differential equation y' = f(x, y), invent values x_0 , y_0 such that $f(x_0, y_0) \neq 0$. Define F, G by the formulas

(1)
$$F(x) = rac{f(x,y_0)}{f(x_0,y_0)}, \quad G(y) = f(x_0,y).$$

Because $f(x_0, y_0) \neq 0$, then (1) makes sense. Test I *infra* implies the following test.

Theorem 1 (Separability Test)

Let F and G be defined by (1). Multiply FG. Then

- (a) If F(x)G(y) = f(x,y), then y' = f(x,y) is separable.
- (b) If $F(x)G(y) \neq f(x,y)$, then y' = f(x,y) is **not separable**.

Compute F and G in Relation f(x,y)=F(x)G(y)

Assume

$$f(x,y) = 6xy + 8y - 15x - 20$$

We determine, without factorization talent, the separation formulas

$$f(x,y) = (3x+4)(2y-5).$$

Invent values $x_0=0,\,y_0=0$, chosen to make $f(x_0,y_0)=-20$ nonzero. Define

$$F(x) = rac{f(x,y_0)}{f(x_0,y_0)} = rac{0+0-15x-20}{-20} = rac{3}{4}x+1,$$

$$G(y) = f(x_0, y) = 0 + 8y - 0 - 20.$$

Then f(x,y) = F(x)G(y) because

$$F(x)G(y) = \left(rac{3}{4}x + 1
ight)(8y - 20) = 6xy + 8y - 15x - 20.$$

Non-Separability Tests

Test I. Equation y' = f(x, y) is not separable provided for some pair of points (x_0, y_0) , (x, y) in the domain of f, (2) holds:

(2)
$$f(x,y_0)f(x_0,y) - f(x_0,y_0)f(x,y) \neq 0.$$

Test II. The equation y' = f(x, y) is not separable if either of the following conditions hold:

- $ullet f_x(x,y)/f(x,y)$ is non-constant in y or
- $ullet f_y(x,y)/f(x,y)$ is non-constant in x.

Test I details

Assume f(x,y) = F(x)G(y), then equation (2) fails because each term on the left side of (2) equals $F(x)G(y_0)F(x_0)G(y)$ for all choices of (x_0,y_0) and (x,y) (hence contradiction $0 \neq 0$).

Test II details

Assume f(x,y)=F(x)G(y) and suppose F,G are sufficiently differentiable. Then

- $ullet rac{f_x(x,y)}{f(x,y)} = rac{F'(x)}{F(x)}$ is independent of y and
- $ullet rac{f_y(x,y)}{f(x,y)} = rac{G'(y)}{G(y)}$ is independent of x.

Illustration

Consider $y' = xy + y^2$.

Test I implies it is not separable, because the left side of the relation is

LHS =
$$f(x,1)f(0,y) - f(0,1)f(x,y)$$

= $(x+1)y^2 - (xy+y^2)$
= $x(y^2-y)$
 $\neq 0$.

Test II implies it is not separable, because

$$rac{f_x}{f} = rac{1}{x+y}$$

is not constant as a function of y.

Variables-Separable Method

The method determines two kinds of solution formulas.

Equilibrium Solutions.

They are the constant solutions y = c of y' = f(x, y). For any equation, find them by substituting y = c into the differential equation.

Non-Equilibrium Solutions.

For a separable equation

$$y' = F(x)G(y),$$

a non-equilibrium solution y is a solution with $G(y) \neq 0$. It is found by dividing by G(y), then applying the method of quadrature.

Theory of Non-Equilibrium Solutions

A given solution y(x) satisfying $G(y(x)) \neq 0$ throughout its domain of definition is called a non-equilibrium solution. Then division by G(y(x)) is allowed.

The method of quadrature applies to the separated equation y'/G(y(x)) = F(x). Some details:

$$\int_{x_0}^x rac{y'(t)dt}{G(y(t))} = \int_{x_0}^x F(t)dt$$
 Integrate both sides of the separated equation over $x_0 \leq t \leq x$. Apply on the left the change of variables $u = y(t)$. Define $y_0 = y(x_0)$. $y(x) = M^{-1}\left(\int_{x_0}^x F(t)dt
ight)$ Define $M(y) = \int_{y_0}^y du/G(u)$. Take inverses to isolate $y(x)$.

In practise, the last step with M^{-1} is never done. The preceding formula is called the *implicit solution*. Some work is done to find algebraically an *explicit solution*, as is given by W^{-1} .

Explicit and Implicit Solutions

Definition 1 (Explicit Solution)

A solution y of y'=f(x,y) is called **explicit** provided it is given by an equation

y = an expression independent of y.

To elaborate, on the left side must appear exactly the symbol y, followed by an equal sign. Symbols y and = are followed by an expression which does not contain the symbol y.

Definition 2 (Implicit Solution)

A solution of y' = f(x, y) is called **implicit** provided it is not explicit.

Examples

- ullet Explicit solutions: $y=1,\,y=x,\,y=f(x),\,y=0,\,y=-1+x^2$
- ullet Implicit Solutions: $2y=2, y^2=x, y+x=0, y=xy^2+1, y+1=x^2, x^2+y^2=1, F(x,y)=c$

The General Solution of $y^\prime=2x(y-3)$.

- ullet The variables-separable method gives equilibrium solutions y=c, which are already explicit. In this case, y=3 is an equilibrium solution.
- ullet Because F=2x, G=y-3, then division by G gives the quadrature-prepared equation y'/(y-3)=2x. A quadrature step gives the implicit solution

$$\ln|y-3| = x^2 + C.$$

• The non-equilibrium solutions may be left in *implicit* form, giving the **general solution** as the list

$$L_1 = \{y = 3, \ln|y - 3| = x^2 + C\}.$$

ullet Algebra can be applied to $\ln |y-3|=x^2+C$ to write it as $y=3+ke^{x^2}$ where k
eq 0. Then general solution L_1 can be re-written as

$$L_2=\{y=3,y=3+ke^{x^2}\}.$$

List L_2 can be distilled to the single formula $y=3+ce^{x^2}$, but L_1 has no simpler expression.

Answer Check an Explicit Solution

To answer check y' = 1 + y with explicit solution $y = -1 + ce^x$, expand the left side of the DE and the right side of the DE separately, then compare the two computations.

LHS
$$=y'$$
 Left side of the DE. $=(-1+ce^x)'$ Substitute the solution $y=-1+ce^x$. $=0+ce^x$ Evaluate. RHS $=1+y$ Right side of the DE. $=-1+1+ce^x$ Substitute the solution $y=-1+ce^x$. $=ce^x$ Evaluate.

Then LHS = RHS for all symbols. The DE is verified.

Answer Check an Implicit Solution

To answer check

$$y' = 1 + y^2$$

with **implicit solution**

$$\arctan(y) = x + c,$$

differentiate the implicit solution equation on x, to produce the differential equation.

 $\arctan(y(x)) = x + c$

The implicit equation, replacing y by y(x).

 $rac{d}{dx} \arctan(y(x)) = rac{d}{dx}(x+c)$

Differentiate the previous equation.

 $rac{y'(x)}{1+(y(x))^2}=1+0$

Chain rule applied left.

 $y' = (1+0)(1+y^2)$

Cross-multiply to isolate y' left.

 $y' = 1 + y^2$

The DE is verified.