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2.5 Linear Applications

This collection of applications for the linear equation y′ + p(x)y = r(x)
includes mixing problems, especially brine tanks in single and multiple
cascade, heating and cooling problems based upon Newton’s law of cool-
ing, radioactive isotope chains, and elementary electric circuits.

Developed here is the theory for mixing cascades, heating and cooling.
Radioactive decay theory was developed on page 3. Electric circuits of
type LR or RC were developed on page 16.

Brine Mixing

Inlet

Outlet

Figure 1. A brine tank.
The tank has one inlet and one outlet. The inlet
supplies a brine mixture and the outlet drains the
tank.

A given tank contains brine, that is, water and salt. Input pipes supply
other, possibly different brine mixtures at varying rates, while output
pipes drain the tank. The problem is to determine the salt x(t) in the
tank at any time.

The basic chemical law to be applied is the mixture law

dx

dt
= input rate− output rate.

The law is applied under a simplifying assumption: the concentration
of salt in the brine is uniform throughout the fluid. Stirring is one way
to meet this requirement. Because of the uniformity assumption, the
amount x(t) of salt in kilograms divided by the volume V (t) of the tank
in liters gives salt concentration2 x(t)/V (t) kilograms per liter.

One Input and One Output. Let the input be a(t) liters per
minute with concentration C1 kilograms of salt per liter. Let the output
empty b(t) liters per minute. The tank is assumed to contain V0 liters of
brine at t = 0. The tank gains fluid at rate a(t) and loses fluid at rate
b(t), therefore V (t) = V0 +

∫ t
0 [a(r)− b(r)]dr is the volume of brine in the

tank at time t. The mixture law applies to obtain (derived on page 109)
the model linear differential equation

dx

dt
= C1a(t)− b(t)x(t)

V (t)
.(1)

2Concentration is defined as amount per unit volume.
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Two-Tank Mixing. Two tanks A and B are assumed to contain A0

and B0 liters of brine at t = 0. Let the input for the first tank A be a(t)
liters per minute with concentration C1 kilograms of salt per liter. Let
tank A empty at b(t) liters per minute into a second tank B, which itself
empties at c(t) liters per minute.

Let x(t) be the number of kilograms of salt in tank A at time t. Similarly,
y(t) is the amount of salt in tank B. The objective is to find differential
equations for the unknowns x(t), y(t).

Fluid loses and gains in each tank give rise to the brine volume formulas
VA(t) = A0 +

∫ t
0 [a(r) − b(r)]dr and VB(t) = B0 +

∫ t
0 [b(r) − c(r)]dr,

respectively, for tanks A and B, at time t.

The mixture law applies to obtain the model linear differential equations

dx

dt
= C1a(t)− b(t)x(t)

VA(t)
,

dy

dt
=

b(t)x(t)
VA(t)

− c(t)y(t)
VB(t)

.

The first equation was solved in the previous paragraph, hence there
is an explicit formula for x(t). Substitute this formula into the second
equation, then solve for y(t) (by the same method).

Residential Heating and Cooling

The internal temperature u(t) in a residence fluctuates with the outdoor
temperature, indoor heating and indoor cooling. Newton’s law of cooling
can be written in this case as

du

dt
= k(a(t)− u(t)) + s(t) + f(t),(2)

where the various symbols have the interpretation below.

k The insulation constant: k ≈ 1/4 for good insula-
tion and k ≈ 1/2 for no insulation.

a(t) The ambient outside temperature.

s(t) Combined rate for all inside heat sources. Includes
living beings, appliances and whatever uses energy.

f(t) Inside heating or cooling rate.

A derivation of (2) appears on page 109. To solve equation (2), write it
in standard linear form and use the integrating factor method on page
86.
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No Sources. Assume the absence of heating inside the building, that
is, s(t) = f(t) = 0. Let the outside temperature be constant: a(t) = a0.
Equation (2) simplifies to the Newton cooling equation on page 4:

du

dt
+ ku(t) = ka0.(3)

From Theorem 1, page 4, the solution is

u(t) = a0 + (u(0)− a0)e−kt.(4)

This formula represents exponential decay of the interior temperature
from u(0) to a0.

Half-Time Insulation Constant. Suppose it’s 50◦F outside and
70◦F initially inside, when the electricity goes off. How long does it take
to drop to 60◦F inside? The answer is about 1–3 hours, depending on
the insulation.

The importance of 60◦F is that it is halfway between the inside and
outside temperatures of 70◦F and 50◦F. The range 1–3 hours is found
from (4) by solving u(T ) = 60 for T , in the extreme cases of poor or
excellent insulation.

The more general equation u(T ) = (a0 +u(0))/2 can be solved. The an-
swer is T = ln(2)/k, called the half-time insulation constant for the
residence. It measures the insulation quality, larger T corresponding to
better insulation. For most residences, the half-time insulation constant
ranges from 1.4 to 2.8 hours.

Winter Heating. The introduction of a furnace and a thermostat
set at temperature T0 (typically, 68◦F to 72◦F) changes the source term
f(t) to the special form

f(t) = k1(T0 − u(t)),

according to Newton’s law of cooling, where k1 is a constant. The dif-
ferential equation (2) becomes

du

dt
= k(a(t)− u(t)) + s(t) + k1(T0 − u(t)).(5)

It is a first-order linear differential equation which can be solved by the
integrating factor method.

Summer Air Conditioning. An air conditioner used with a ther-
mostat leads to the same differential equation (5) and solution, because
Newton’s law of cooling applies to both heating and cooling.
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Evaporative Cooling. In desert-mountain areas, where summer hu-
midity is low, the evaporative cooler is a popular low-cost solution to
cooling. The cooling effect is due to heat loss from the supply of outside
air, caused by energy conversion during water evaporation. Cool air is
pumped into the residence much like a furnace pumps warm air. An
evaporative cooler may have no thermostat. The temperature P (t) of
the pumped air depends on the outside air temperature and humidity.

A Newton’s cooling model for the inside temperature u(t) requires a
constant k1 for the evaporative cooling term f(t) = k1(P (t) − u(t)). If
s(t) = 0 is assumed, then equation (2) becomes

du

dt
= k(a(t)− u(t)) + k1(P (t)− u(t)).(6)

This is a first-order linear differential equation, solvable by the integrat-
ing factor method.

During hot summer days the relation P (t) = 0.85a(t) could be valid, that
is, the air pumped from the cooler vent is 85% of the ambient outside
temperature a(t). Extreme temperature variations can occur in the fall
and spring. In July, the reverse is possible, e.g., 100 < a(t) < 115.
Assuming P (t) = 0.85a(t), the solution of (6) is

u(t) = u(0)e−kt−k1t + (k + 0.85k1)
∫ t

0
a(r)e(k+k1)(r−t)dr.

Figure 2 shows the solution for a 24-hour period, using a sample profile
a(t), k = 1/4, k1 = 2 and u(0) = 69. The residence temperature u(t) is
expected to be approximately between P (t) and a(t).

u

240
55

99

P

a
a(t) =



75− 2 t 0 ≤ t ≤ 6
39 + 4 t 6 < t ≤ 9
30 + 5 t 9 < t ≤ 12
54 + 3 t 12 < t ≤ 15

129− 2 t 15 < t ≤ 21
170− 4 t 21 < t ≤ 23
147− 3 t 23 < t ≤ 24

Figure 2. A 24-hour plot of P , u and temperature profile a(t).

Examples

18 Example (Pollution) When industrial pollution in Lake Erie ceased, the
level was five times that of its inflow from Lake Huron. Assume Lake Erie
has perfect mixing, constant volume V and equal inflow/outflow rates of
0.73V per year. Estimate the time required to reduce the pollution in half.

Solution: The answer is about 1.34 years. An overview of the solution will be
given, followed by technical details.
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Overview. The brine-mixing model applies to pollution problems, giving a
differential equation model for the pollution concentration x(t),

x′(t) = 0.73V c− 0.73x(t), x(0) = 5cV,

where c is the inflow pollution concentration. The model has solution

x(t) = x(0)
(
0.2 + 0.8e−0.73t

)
.

Solving for the time T at which x(T ) = 1
2x(0) gives T = ln(8/3)/0.73 = 1.34

years.

Model details. The rate of change of x(t) equals the concentration rate in
minus the concentration rate out. The in-rate equals c times the inflow rate, or
c(0.73V ). The out-rate equals x(t) times the outflow rate, or 0.73V

V x(t). This
justifies the differential equation. The statement x(0)=“five times that of Lake
Huron” means that x(0) equals 5c times the volume of Lake Erie, or 5cV .

Solution details. Re-write the differential equation as x′(t) + 0.73x(t) =
0.73x(0)/5. It has equilibrium solution xp = x(0)/5. The homogeneous solution
is xh = ke−0.73t, from the theory of growth-decay equations. Adding xh and xp

gives the general solution x. To solve the initial value problem, substitute t = 0
and find k = 4x(0)/5. Substitute for k into x = x(0)/5 + ke−0.73t to obtain the
reported solution.

Equation for T details. The equation x(T ) = 1
2x(0) becomes x(0)(0.2 +

0.8e−0.73T ) = x(0)/2, which by algebra reduces to the exponential equation
e−0.73T = 3/8. Take logarithms to isolate T = − ln(3/8)/0.73 ≈ 1.3436017.

19 Example (Brine Cascade) Assume brine tanks A and B in Figure 3 have
volumes 100 and 200 gallons, respectively. Let A(t) and B(t) denote the
number of pounds of salt at time t, respectively, in tanks A and B. Pure
water flows into tank A, brine flows out of tank A and into tank B, then brine
flows out of tank B. All flows are at 4 gallons per minute. Given A(0) = 40
and B(0) = 40, find A(t) and B(t).

water

A

B Figure 3. Cascade of two brine tanks.

Solution: The solutions for the brine cascade are (details below)

A(t) = 40e−t/25, B(t) = 120e−t/50 − 80e−t/25.

Modeling. This is an instance of the two-tank mixing problem on page 101.
The volumes in the tanks do not change and the input salt concentration is
C1 = 0. The equations are

dA

dt
= −4A(t)

100
,

dB

dt
=

4A(t)
100

− 4B(t)
200

.

Solution A(t) details.
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A′ = −0.04A, A(0) = 40 Initial value problem to be solved.

A = 40e−t/25 Solution found by the growth-decay
model.

Solution B(t) details.

B′ = 0.04A− 0.02B, B(0) = 40 Initial value problem to be solved.

B′ + 0.02B = 1.6e−t/25 Substitute for A. Get standard form.

B′ + 0.02B = 0, B(0) = 40 Homogeneous problem to be solved.

Bh = 40e−t/50 Homogeneous solution. Growth-decay
formula applied.

Bp = e−t/50
∫ t

0
1.6e−r/25er/50dr Variation of parameters solution.

= 80e−t/50 − 80e−t/25 Evaluate integral.

B = Bh +Bp Superposition.

= 120e−t/50 − 80e−t/25 Final solution.

The solution can be checked in maple as follows.

de1:=diff(x(t),t)=-4*x(t)/100:
de2:=diff(y(t),t)=4*x(t)/100-4*y(t)/200:
ic:=x(0)=40,y(0)=40:
dsolve({de1,de2,ic},{x(t),y(t)});

20 Example (Office Heating) A worker shuts off the office heat and goes
home at 5PM. It’s 72◦F inside and 60◦F outside overnight. Estimate the
office temperature at 8PM, 11PM and 6AM.

Solution:
The temperature estimates are 62.7-65.7◦F, 60.6-62.7◦F and 60.02-60.5◦F. De-
tails follow.

Model. The residential heating model applies, with no sources, to give u(t) =
a0 + (u(0)− a0)e−kt. Supplied are values a0 = 60 and u(0) = 72. Unknown is
constant k in the formula

u(t) = 60 + 12e−kt.

Estimation of k. To make the estimate for k, assume the range 1/4 ≤ k ≤ 1/2,
which covers the possibilities of poor to excellent insulation.

Calculations. The estimates requested are for t = 3, t = 6 and t = 13. The
formula u(t) = 60 + 12e−kt and the range 0.25 ≤ k ≤ 0.5 gives the estimates

62.68 ≤ 60 + 12e−3k ≤ 65.67,
60.60 ≤ 60 + 12e−6k ≤ 62.68,
60.02 ≤ 60 + 12e−13k ≤ 60.47.
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21 Example (Spring Temperatures) It’s spring. The outside temperatures
are between 45◦F and 75◦F and the residence has no heating or cooling.
Find an approximation for the interior temperature fluctuation u(t) using
the estimate a(t) = 60− 15 cos(π(t− 4)/12), k = ln(2)/2 and u(0) = 53.

Solution: The approximation, justified below, is

u(t) ≈ −8.5e−kt + 60 + 1.5 cos
πt

12
− 12 sin

πt

12
.

Model. The residential model for no sources applies. Then

u′(t) = k(a(t)− u(t)).

Computation of u(t). Let ω = π/12 and k = ln(2)/2. The solution is

u = u(0)e−kt +
∫ t

0
ka(r)ek(r−t)dr Variation of parameters.

= 53e−kt +
∫ t

0
15k(4− cosω(t− 4))ek(r−t)dr Insert a(t) and u(0).

≈ −8.5e−kt + 60 + 1.5 cosωt− 12 sinωt Used maple integration.

The maple code used for the integration appears below.

k:=ln(2)/2: u0:=53:
F:=r->k*(60-15*cos(Pi *(r-4)/12)):
A:=t->(u0+int(F(r)*exp(k*r),r=0..t))*exp(-k*t);
simplify(A(t));

22 Example (Temperature Variation) Justify that in the spring and fall, the
interior of a residence has temperature variation between 69% and 89% of
the outside temperature variation.

Solution: The justification necessarily makes some assumptions, which are:

a(t) = B −A cosω(t− 4) Assume A > 0, B > 0, ω = π/12 and
extreme temperatures at 4AM and 4PM.

s(t) = 0 No inside heat sources.

f(t) = 0 No furnace or air conditioner.

1/4 ≤ k ≤ 1/2 Vary from excellent to poor insulation.

u(0) = B The average of the outside low and high.

Model. The residential model for no sources applies. Then

u′(t) = k(a(t)− u(t)).

Formula for u. Variation of parameters gives a compact formula:

u = u(0)e−kt +
∫ t

0
ka(r)ek(r−t)dr See (5), page 87.

= Be−kt +
∫ t

0
k(B −A cosω(t− 4))ek(r−t)dr Insert a(t) and u(0).

= c0Ae
−kt +B + c1A cosωt+ c2A sinωt Evaluate. Values below.
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The values of the constants in the calculation of u are

c0 = 72k2 − 6kπ
√

3, c1 =
6kπ
√

3− 72k2

144k2 + π2
, c2 =

−6kπ − 72k2
√

3
144k2 + π2

.

The trigonometric formula a cos θ+ b sin θ = r sin(θ+φ) where r2 = a2 + b2 and
tanφ = a/b can be applied to the formula for u to rewrite it as

u = c0Ae
−kt +B +A

√
c21 + c22 sin(ωt+ φ).

The outside low and high are B − A and B + A. The outside temperature
variation is their difference 2A. The exponential term contributes less than one
degree after 12 hours. The inside low and high are therefore approximately
B − rA and B + rA where r =

√
c21 + c22. The inside temperature variation is

their difference 2rA, which is r times the outside variation.

It remains to show that 0.69 ≤ r ≤ 0.89. The equation for r has a simple
representation:

r =
12k√

144k2 + π2
.

It has derivative dr/dk > 0. The extrema occur at the endpoints of the interval
1/4 ≤ k ≤ 1/2, giving values 0.69 and 0.89, approximately. This justifies the
estimates of 69% and 89%.

The maple code used for the integration appears below.

omega:=Pi/12:
F:=r->k*(B-A*cos(omega *(r-4))):
G:=t->(B+int(F(r)*exp(k*r),r=0..t))*exp(-k*t);
simplify(G(t));

23 Example (Radioactive Chain) Let A, B and C be the amounts of three
radioactive isotopes. Assume A decays into B at rate a, then B decays into
C at rate b. Given a 6= b, A(0) = A0 and B(0) = 0, find formulas for A
and B.

Solution: The isotope amounts are (details below)

A(t) = A0e
−at, B(t) = aA0

e−at − e−bt

b− a
.

Modeling. The reaction model will be shown to be

A′ = −aA, A(0) = A0, B′ = aA− bB, B(0) = 0.

The derivation uses the radioactive decay law on page 18. The model for A is
simple decay A′ = −aA. Isotope B is created from A at a rate equal to the
disintegration rate of A, or aA. But B itself undergoes disintegration at rate
bB. The rate of increase of B is not aA but the difference of aA and bB, which
accounts for lost material. Therefore, B′ = aA− bB.

Solution Details for A.
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A′ = −aA, A(0) = A0 Initial value problem to solve.

A = A0e
−at Use the growth-decay formula on page 3.

Solution Details for B.

B′ = aA− bB, B(0) = 0 Initial value problem to solve.

B′ + bB = aA0e
−at, B(0) = 0 Insert A = A0e

−at. Standard form.

B = e−bt
∫ t

0
aA0e

−arebrdr Variation of parameters solution y∗p , page
93. It already satisfies B(0) = 0.

= aA0
e−at − e−bt

b− a
Evaluate the integral for b 6= a.

24 Example (Electric Circuits) For the LR-circuit of Figure 4, show that
Iss = E/R and Itr = I0e

−Rt/L are the steady-state and transient currents.

R

I(t)

L

E

Figure 4. An LR-circuit with
constant voltage E and zero
initial current I(0) = 0.

Solution:
Model. The LR-circuit equation is derived from Kirchhoff’s laws and the volt-
age drop formulas on page 17. The only new element is the added electromotive
force term E(t), which is set equal to the algebraic sum of the voltage drops,
giving the model

LI ′(t) +RI(t) = E(t), I(0) = I0.

General solution. The details:

I ′ + (R/L)I = E/L Standard linear form.

Ip = E/R Set I=constant, solve for a particular solution Ip.

I ′ + (R/L)I = 0 Homogeneous equation. Solve for I = Ih.

Ih = I0e
−Rt/L Growth-decay formula, page 4.

I = Ih + Ip Superposition.

= I0e
−Rt/L + E/R General solution found.

Steady-state solution. The steady-state solution is found by striking out
from the general solution all terms that approach zero at t = ∞. Remaining
after strike-out is Iss = E/R.

Transient solution. The term transient refers to the terms in the general
solution which approaches zero at t =∞. Therefore, Itr = I0e

−Rt/L.

25 Example (Time constant) Show that the current I(t) in the LR-circuit
of Figure 4 is at least 95% of the steady-state current E/R after three time
constants, i.e., after time t = 3L/R.
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Solution: Physically, the time constant L/R for the circuit is found by an
experiment in which the circuit is initialized to I = 0 at t = 0, then the current
I is observed until it reaches 63% of its steady-state value.

Time to 95% of Iss. The solution is I(t) = E(1 − e−Rt/L)/R. Solving the
inequality 1− e−Rt/L ≥ 0.95 gives

0.95 ≤ 1− e−Rt/L Inequality to be solved for t.

e−Rt/L ≤ 1/20 Move terms across the inequality.

ln e−Rt/L ≤ ln(1/20) Take the logarithm across the inequality.

−Rt/L ≤ ln 1− ln 20 Apply logarithm rules.

t ≥ L ln(20)/R Isolate t on one side.

The value ln(20) = 2.9957323 leads to the rule: after three times the time
constant has elapsed, the current has reached 95% of the steady-state current.

Details and Proofs

Brine-Mixing One-tank Proof: The brine-mixing equation x′(t) = C1a(t)−
b(t)x(t)/V (t) is justified for the one-tank model, by applying the mixture law
“dx/dt = input rate− output rate” as follows.

input rate =
(
a(t)

liters

minute

)(
C1

kilograms

liter

)
= C1a(t)

kilograms

minute
,

output rate =
(
b(t)

liters

minute

)(
x(t)
V (t)

kilograms

liter

)
=
b(t)x(t)
V (t)

kilograms

minute
.

Residential Heating and Cooling Proof: Newton’s law of cooling will be
applied to justify the residential heating and cooling equation

du

dt
= k(a(t)− u(t)) + s(t) + f(t).

Let u(t) be the indoor temperature. The heat flux is due to three heat source
rates:

N(t) = k(a(t)− u(t)) The Newton cooling rate.

s(t) Combined rate for all inside heat sources.

f(t) Inside heating or cooling rate.

The expected change in u is the sum of the rates N , s and f . In the limit, u′(t)
is on the left and the sum N(t) + s(t) + f(t) is on the right. This completes the
proof.
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Exercises 2.5

Concentration. A lab assistant col-
lects n liters of brine, boils it until only
salt crystals remain, then uses a scale
to determine the crystal mass m kilo-
grams.
(a) Report the concentration units.
(b) Find the brine concentration.

1. n = 1, m = 0.2275

2. n = 1.75, m = 0.32665

3. n = 1.5, m = 0.0155

4. n = 1.25, m = 0.0104

5. n = 2, m = 0.1

6. n = 2.5, m = 0.2215

One-Tank Mixing. Assume one inlet
and one outlet. Determine the amount
x(t) of salt in the tank at time t. Use
the text notation for equation (1).

7. The inlet adds 10 liters per minute
with concentration C1 = 0.023
kilograms per liter. The tank con-
tains 110 liters of distilled wa-
ter. The outlet drains 10 liters per
minute.

8. The inlet adds 12 liters per minute
with concentration C1 = 0.0205
kilograms per liter. The tank con-
tains 200 liters of distilled wa-
ter. The outlet drains 12 liters per
minute.

9. The inlet adds 10 liters per minute
with concentration C1 = 0.0375
kilograms per liter. The tank con-
tains 200 liters of brine in which 3
kilograms of salt is dissolved. The
outlet drains 10 liters per minute.

10. The inlet adds 12 liters per minute
with concentration C1 = 0.0375
kilograms per liter. The tank con-
tains 500 liters of brine in which 7
kilograms of salt is dissolved. The
outlet drains 12 liters per minute.

11. The inlet adds 10 liters per minute
with concentration C1 = 0.1075
kilograms per liter. The tank con-
tains 1000 liters of brine in which
k kilograms of salt is dissolved.
The outlet drains 10 liters per
minute.

12. The inlet adds 14 liters per minute
with concentration C1 = 0.1124
kilograms per liter. The tank con-
tains 2000 liters of brine in which
k kilograms of salt is dissolved.
The outlet drains 14 liters per
minute.

13. The inlet adds 10 liters per minute
with concentration C1 = 0.104
kilograms per liter. The tank con-
tains 100 liters of brine in which
0.25 kilograms of salt is dissolved.
The outlet drains 11 liters per
minute. Determine additionally
the time when the tank is empty.

14. The inlet adds 16 liters per minute
with concentration C1 = 0.01114
kilograms per liter. The tank con-
tains 1000 liters of brine in which
4 kilograms of salt is dissolved.
The outlet drains 20 liters per
minute. Determine additionally
the time when the tank is empty.

15. The inlet adds 10 liters per minute
with concentration C1 = 0.1 kilo-
grams per liter. The tank con-
tains 500 liters of brine in which k
kilograms of salt is dissolved. The
outlet drains 12 liters per minute.
Determine additionally the time
when the tank is empty.

16. The inlet adds 11 liters per minute
with concentration C1 = 0.0156
kilograms per liter. The tank con-
tains 700 liters of brine in which k
kilograms of salt is dissolved. The
outlet drains 12 liters per minute.
Determine additionally the time
when the tank is empty.
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Two-Tank Mixing. Assume brine
tanks A and B in Figure 3 have vol-
umes 100 and 200 gallons, respectively.
Let A(t) and B(t) denote the number
of pounds of salt at time t, respec-
tively, in tanks A and B. Distilled wa-
ter flows into tank A, then brine flows
out of tank A and into tank B, then
out of tank B. All flows are at r gal-
lons per minute. Given rate r and ini-
tial salt amounts A(0) and B(0), find
A(t) and B(t).

17. r = 4, A(0) = 40, B(0) = 20.

18. r = 3, A(0) = 10, B(0) = 15.

19. r = 5, A(0) = 20, B(0) = 40.

20. r = 5, A(0) = 40, B(0) = 30.

21. r = 8, A(0) = 10, B(0) = 12.

22. r = 8, A(0) = 30, B(0) = 12.

23. r = 9, A(0) = 16, B(0) = 14.

24. r = 9, A(0) = 22, B(0) = 10.

25. r = 7, A(0) = 6, B(0) = 5.

26. r = 7, A(0) = 13, B(0) = 26

Residential Heating. Assume the
Newton cooling model for heating and
insulation values 1/4 ≤ k ≤ 1/2. Fol-
low Example 20, page 105.

27. The office heat goes off at 7PM.
It’s 74◦F inside and 58◦F out-
side overnight. Estimate the of-
fice temperature at 10PM, 1AM
and 6AM.

28. The office heat goes off at 6:30PM.
It’s 73◦F inside and 55◦F out-
side overnight. Estimate the office
temperature at 9PM, 3AM and
7AM.

29. The radiator goes off at 9PM.
It’s 74◦F inside and 58◦F out-
side overnight. Estimate the room
temperature at 11PM, 2AM and
6AM.

30. The radiator goes off at 10PM.
It’s 72◦F inside and 55◦F out-
side overnight. Estimate the room
temperature at 2AM, 5AM and
7AM.

31. The office heat goes on in the
morning at 6:30AM. It’s 57◦F
inside and 40◦ to 55◦F outside
until 11AM. Estimate the office
temperature at 8AM, 9AM and
10AM. Assume the furnace pro-
vides a five degree temperature
rise in 30 minutes and the ther-
mostat is set for 76◦F.

32. The office heat goes on at 6AM.
It’s 55◦F inside and 43◦ to 53◦F
outside until 10AM. Estimate the
office temperature at 7AM, 8AM
and 9AM. Assume the furnace
provides a seven degree temper-
ature rise in 45 minutes and the
thermostat is set for 78◦F.

33. The hot water heating goes on
at 6AM. It’s 55◦F inside and 50◦

to 60◦F outside until 10AM. Es-
timate the room temperature at
7:30AM. Assume the radiator pro-
vides a four degree temperature
rise in 45 minutes and the ther-
mostat is set for 74◦F.

34. The hot water heating goes on at
5:30AM. It’s 54◦F inside and 48◦

to 58◦F outside until 9AM. Es-
timate the room temperature at
7AM. Assume the radiator pro-
vides a five degree temperature
rise in 45 minutes and the ther-
mostat is set for 74◦F.

35. A portable heater goes on at
7AM. It’s 45◦F inside and 40◦

to 46◦F outside until 11AM. Es-
timate the room temperature at
9AM. Assume the heater provides
a two degree temperature rise in
30 minutes and the thermostat is
set for 90◦F.
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36. A portable heater goes on at
8AM. It’s 40◦F inside and 40◦

to 45◦F outside until 11AM. Es-
timate the room temperature at
10AM. Assume the heater pro-
vides a two degree temperature
rise in 20 minutes and the ther-
mostat is set for 90◦F.

Evaporative Cooling. Define outside
temperature (see Figure 2)

a(t) =



75− 2 t 0 ≤ t ≤ 6
39 + 4 t 6 < t ≤ 9
30 + 5 t 9 < t ≤ 12
54 + 3 t 12 < t ≤ 15

129− 2 t 15 < t ≤ 21
170− 4 t 21 < t ≤ 23
147− 3 t 23 < t ≤ 24

.

Given k, k1, P (t) = wa(t) and u(0) =
69, then plot u(t), P (t) and a(t) on one
graphic.

u(t) = u(0)e−kt−k1t+
(k + wk1)

∫ t

0
a(r)e(k+k1)(r−t)dr.

37. k = 1/4, k1 = 2, w = 0.85

38. k = 1/4, k1 = 1.8, w = 0.85

39. k = 3/8, k1 = 2, w = 0.85

40. k = 3/8, k1 = 2.4, w = 0.85

41. k = 1/4, k1 = 3, w = 0.80

42. k = 1/4, k1 = 4, w = 0.80

43. k = 1/2, k1 = 4, w = 0.80

44. k = 1/2, k1 = 5, w = 0.80

45. k = 3/8, k1 = 3, w = 0.80

46. k = 3/8, k1 = 4, w = 0.80

Radioactive Chain. Let A, B and
C be the amounts of three radioactive

isotopes. Assume A decays into B at
rate a, then B decays into C at rate b.
Given a, b, A(0) = A0 and B(0) = B0,
find formulas for A and B.

47. a = 2, b = 3, A0 = 100, B0 = 10

48. a = 2, b = 3, A0 = 100, B0 = 100

49. a = 1, b = 4, A0 = 100, B0 = 200

50. a = 1, b = 4, A0 = 300, B0 = 100

51. a = 4, b = 3, A0 = 100, B0 = 100

52. a = 4, b = 3, A0 = 100, B0 = 200

53. a = 6, b = 1, A0 = 600, B0 = 100

54. a = 6, b = 1, A0 = 500, B0 = 400

55. a = 3, b = 1, A0 = 100, B0 = 200

56. a = 3, b = 1, A0 = 400, B0 = 700

Electric Circuits. In the LR-circuit
of Figure 4, assume E(t) = A coswt
and I(0) = 0. Solve for I(t).

57. A = 100, w = 2π, R = 1, L = 2

58. A = 100, w = 4π, R = 1, L = 2

59. A = 100, w = 2π, R = 10, L = 1

60. A = 100, w = 2π, R = 10, L = 2

61. A = 5, w = 10, R = 2, L = 3

62. A = 5, w = 4, R = 3, L = 2

63. A = 15, w = 2, R = 1, L = 4

64. A = 20, w = 2, R = 1, L = 3

65. A = 25, w = 100, R = 5, L = 15

66. A = 25, w = 50, R = 5, L = 5


