How to Solve Linear Differential Equations

- Definition: Base Atom, Atom
- Independence of Atoms
- Construction of the General Solution from a List of Distinct Atoms
- Euler's Theorems
 - Euler's Basic Theorem
 - Euler's Multiplicity Theorem
 - A Shortcut Method
- Examples
- Main Theorems on Atoms and Linear Differential Equations

Atoms

A base atom is one of 1, e^{ax} , $\cos bx$, $\sin bx$, $e^{ax} \cos bx$, $e^{ax} \sin bx$, with b > 0 and $a \neq 0$.

An **atom** equals x^n times a base atom, where $n \ge 0$ is an integer.

Details and Remarks

- Euler's formula $e^{i\theta} = \cos \theta + i \sin \theta$ implies that an atom is constructed from the complex expression $x^n e^{ax+ibx}$ by taking real and imaginary parts.
- The powers $1, x, x^2, \ldots, x^k$ are atoms.
- The term that makes up an atom has coefficient 1, therefore $2e^x$ is not an atom, but the 2 can be stripped off to create the atom e^x . Zero is not an atom. Linear combinations like $2x + 3x^2$ are not atoms, but the individual terms x and x^2 are indeed atoms. Terms like $-e^x$, e^{-x^2} , $x^{5/2} \cos x$, $\ln |x|$ and $x/(1+x^2)$ are not atoms.

Independence

Linear algebra defines a list of functions f_1, \ldots, f_k to be **linearly independent** if and only if the representation of the zero function as a linear combination of the listed functions is uniquely represented, that is,

$$0=c_1f_1(x)+c_2f_2(x)+\cdots+c_kf_k(x)$$
 for all x

implies $c_1 = c_2 = \cdots = c_k = 0$. Independence and Atoms

Theorem 1 (Atoms are Independent)

A list of finitely many distinct atoms is linearly independent.

Theorem 2 (Powers are Independent)

The list of distinct atoms $1, x, x^2, \ldots, x^k$ is linearly independent. And all of its sublists are linearly independent.

Construction of the General Solution from a List of Distinct Atoms

• Picard's theorem says that the homogeneous constant-coefficient linear differential equation

$$y^{(n)} + p_{n-1}y^{(n-1)} + \dots + p_1y' + p_0y = 0$$

has solution space S of dimension n. Picard's theorem reduces the general solution problem to finding n linearly independent solutions.

• Euler's theorem *infra* says that the required *n* independent solutions can be taken to be atoms. The theorem explains how to construct a list of distinct atoms, each of which is a solution of the differential equation, from the roots of the characteristic equation [characteristic polynomial=left side]

$$r^{n} + p_{n-1}r^{n-1} + \dots + p_{1}r + p_{0} = 0.$$

- The **Fundamental Theorem of Algebra** states that there are exactly *n* roots *r*, real or complex, for an *n*th order polynomial equation. The result implies that the characteristic equation has exactly *n* roots, counting multiplicities.
- General Solution. Because the list of atoms constructed by Euler's theorem has *n* distinct elements, then this list of independent atoms forms a **basis** for the general solution of the differential equation, giving

$$y = c_1(\operatorname{atom} 1) + \cdots + c_n(\operatorname{atom} n).$$

Symbols c_1, \ldots, c_n are arbitrary coefficients. In particular, each atom listed is itself a solution of the differential equation.

Euler's Basic Theorem

Theorem 3 (L. Euler)

The exponential $y = e^{r_1 x}$ is a solution of a constant-coefficient linear homogeneous differential of the *n*th order if and only if $r = r_1$ is a root of the characteristic equation.

- If $r_1 = a$ is a real root, then one atom e^{ax} is constructed by Euler's Theorem.
- If $r_1 = a + ib$ is a complex root (b > 0), then Euler's Theorem gives a complex solution

$$e^{r_1x} = e^{ax}\cos bx + ie^{ax}\sin bx.$$

The real and imaginary parts of this complex solutions are real solutions of the differential equation. Therefore, one complex root $r_1 = a + ib$ produces *two atoms*

$$e^{ax}\cos bx, \quad e^{ax}\sin bx.$$

The conjugate root a - ib produces the same two atoms, hence it is ignored.

Euler's Multiplicity Theorem

Definition. A root $r = r_1$ of a polynomial equation p(r) = 0 has multiplicity k provided $(r - r_1)^k$ divides p(r) but $(r - r_1)^{k+1}$ does not divide p(r). The calculus equivalent is $p^{(j)}(r_1) = 0$ for j = 0, ..., k - 1 and $p^{(k)}(r_1) \neq 0$.

Theorem 4 (L. Euler)

The expression $y = x^k e^{r_1 x}$ is a solution of a constant-coefficient linear homogeneous differential of the *n*th order if and only if $(r-r_1)^{k+1}$ divides the characteristic polynomial.

A Shortcut for using Euler's Theorems

Let root r_1 of the characteristic equation have multiplicity m+1.

- Find a base atom from Euler's Basic Theorem.
- Multiply the base atom by 1, x, ..., x^m.
 This process constructs, from the base atom, exactly m + 1 atoms. The atom count m + 1 equals the multiplicity of root r₁.
- A real root $r_1 = a$ will produce one base atom e^{ax} , to which this process is applied.
- A complex root $r_1 = a + ib$ will produce 2 base atoms $e^{ax} \cos bx$, $e^{ax} \sin bx$. This process is applied to both.

Atom List Examples

1. If root r = -3 has multiplicity 4, then the atom list is

$$e^{-3x}, xe^{-3x}, x^2e^{-3x}, x^3e^{-3x}.$$

The list is constructed by multiplying the base atom e^{-3x} by powers 1, x, x^2, x^3 . The multiplicity 4 of the root equals the number of constructed atoms.

2. If r = -3 + 2i is a root of the characteristic equation, then the base atoms for this root (both -3 + 2i and -3 - 2i counted) are

$$e^{-3x}\cos 2x, \hspace{1em} e^{-3x}\sin 2x.$$

If root r = -3 + 2i has multiplicity 3, then the two real atoms are multiplied by 1, x, x^2 to obtain a total of 6 atoms

$$e^{-3x}\cos 2x, \; xe^{-3x}\cos 2x, \; x^2e^{-3x}\cos 2x, \ e^{-3x}\sin 2x, \; xe^{-3x}\sin 2x, \; x^2e^{-3x}\sin 2x.$$

The number of atoms generated for each base atom is 3, which equals the multiplicity of the root -3 + 2i.

Theorem 5 (Homogeneous Solution y_h and Atoms)

Linear homogeneous differential equations with constant coefficients have general solution $y_h(x)$ equal to a linear combination of atoms.

Theorem 6 (Particular Solution y_p and Atoms)

A linear non-homogeneous differential equation with constant coefficients a having forcing term f(x) equal to a linear combination of atoms has a particular solution $y_p(x)$ which is a linear combination of atoms.

Theorem 7 (General Solution y and Atoms)

A linear non-homogeneous differential equation with constant coefficients having forcing term

$$f(x) =$$
 a linear combination of atoms

has general solution

 $y(x) = y_h(x) + y_p(x) = ext{ a linear combination of atoms.}$

Proofs

The first theorem follows from Picard's theorem, Euler's theorem and independence of atoms. The second follows from the method of undetermined coefficients, *infra*. The third theorem follows from the first two.