Math 2270 Extra Credit Problems Chapter 5 S2010

Due date: See the internet due date. Records are locked on that date and only corrected, never appended.

Submitted work. Please submit one stapled package. Kindly label problems **Extra Credit**. Label each problem with its corresponding problem number. You may attach this printed sheet to simplify your work.

Problem Xc5.1-10. (Angle)

For which values of
$$k$$
 are the vectors $\mathbf{u} = \begin{pmatrix} 2k \\ 1 \\ 3 \end{pmatrix}$ and $\mathbf{v} = \begin{pmatrix} 1 \\ k \\ 2 \end{pmatrix}$ perpendicular?

Problem Xc5.1-26. (Orthogonal Projection)

Find the orthogonal projection of \mathbf{w} onto the subspace V, given

$$\mathbf{w} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad V = \mathbf{span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix} \right\}.$$

Problem Xc5.1-34. (Minimization)

Among all the vectors $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ in \mathbb{R}^3 , find the one with unit length that minimizes the sum x + 2y + 3z.

Problem Xc5.2-14. (Gram-Schmidt Basis)

Given the basis below, labeled \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , find the Gram-Schmidt basis \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{u}_3 .

$$\begin{pmatrix} 1 \\ 7 \\ 1 \\ 7 \end{pmatrix}, \begin{pmatrix} 0 \\ 7 \\ 2 \\ 7 \end{pmatrix}, \begin{pmatrix} 2 \\ 15 \\ 2 \\ 13 \end{pmatrix}.$$

Problem Xc5.2-20. (QR-Factorization)

Find the factorization M = QR, given

$$M = \left(\begin{array}{ccc} 4 & 25 & 0\\ 0 & 0 & -2\\ 3 & -25 & 0 \end{array}\right).$$

Problem Xc5.2-34. (Kernel)

Find an orthonormal basis for the kernel of the matrix $A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{pmatrix}$.

Problem Xc5.2-38. (QR-Factorization)

Find the factorization
$$M = QR$$
, given $M = \begin{pmatrix} 0 & -3 & 0 \\ 0 & 0 & 0 \\ 4 & 0 & 0 \\ 0 & 0 & 5 \end{pmatrix}$

Problem Xc5.3-11. (Orthogonal Matrices)

Given A and B are orthogonal, then which of the following must be orthogonal?

(a)
$$2A$$
, (b) ABA , (c) $A^{-1}B^{T}$, (d) $A - AB$, (e) $AB + BA$, (f) $-BA$

Problem Xc5.3-20. (Symmetric Matrices)

Given A and B are symmetric matrices and A is invertible, then which of the following must also be symmetric?

(a)
$$A^T A$$
, (b) ABA , (c) $A^{-1} B$, (d) $A - B$, (e) $A - BA$, (f) $A - A^T$, (g) $A^T B^T BA$, (h) $B(A + A^T)B^T$

Problem Xc5.3-26. (Dot Product)

Let T be an orthogonal transformation from \mathbb{R}^n to \mathbb{R}^n . Prove that $\mathbf{u} \cdot \mathbf{v} = T(\mathbf{u}) \cdot T(\mathbf{v})$ for all vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n .

Problem Xc5.3-32a. (Orthogonal Matrices)

Assume A is $n \times m$ and $A^T A = I$. Is AA^T the identity matrix? Explain.

Problem Xc5.3-44. (Orthogonal Matrices)

Consider an $n \times m$ matrix A. Find in terms of n and m the value of the sum $\operatorname{rank}(\operatorname{dim}(A)) + \operatorname{rank}(\ker(A^T))$.

Problem Xc5.3-50. (QR-Factorization)

- (a) Find all square matrices A that are both orthogonal and upper triangular with positive diagonal entries.
- (b) Show that the QR-factorization is unique for an invertible square matrix A. Hint: see Exercise 50b in **Bretscher 3E**, section 5.3.

Problem Xc5.4-5. (Basis of V^{\perp})

Find a basis for V^{\perp} , where $V = \ker(A)$ and

$$A = \left(\begin{array}{rrrr} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 3 \\ 0 & 0 & 0 & 0 \end{array}\right).$$

Problem Xc5.4-16. (Rank)

Prove or disprove: The equation $\operatorname{rank}(A) = \operatorname{rank}(A^T A)$ hold for all square matrices A.

Problem Xc5.4-22. (Least Squares)

Find the least squares solution \mathbf{x}^* of the system $A\mathbf{x} = \mathbf{b}$, given

$$A = \begin{pmatrix} 3 & 2 \\ 5 & 3 \\ 4 & 5 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 10 \\ 18 \\ 4 \end{pmatrix}.$$

Problem Xc5.4-26. (Least Squares)

Find the least squares solution \mathbf{x}^* of the system $A\mathbf{x} = \mathbf{b}$, given

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}.$$

Problem Xc5.5-10. (Orthonormal Basis)

Find an orthonormal basis for V^{\perp} , where $V = \text{span}\{1 + t^2\}$, in the space W of all polynomials $a_0 + a_1t + a_2t^2$ with inner product $\langle f, g \rangle = \frac{1}{2} \int_{-1}^{1} f(t)g(t)dt$.

Problem Xc5.5-24. (Orthonormal Basis)

Consider the linear space P of all polynomials with inner product $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$. Let f, g, h be three polynomials satisfying the relations

$$\begin{array}{llll} < f, f> = 4 & < f, g> = 0 & < f, h> = 8 \\ < g, f> = 0 & < g, g> = 2 & < g, h> = 4 \\ < h, f> = 8 & < h, g> = 4 & < h, h> = 10 \end{array}$$

- (a) Find < f, g + 2h >.
- (b) Find ||g + h||.
- (c) Find c_1 , c_2 satisfying $\mathbf{proj}_{\mathbf{span}\{f,g\}}(h) = c_1 f + c_2 g$.
- (d) Find an orthonormal basis for the span of f, g, h expressed as linear combinations of f, g and h.

End of extra credit problems chapter 5.