Due date: See the internet due dates. Maple lab 4 has three problems L4.1, L4.2, L4.3.

References: Code in maple appears in 2250mapleL4-S2010.txt at URL http://www.math.utah.edu/~gustafso/
This document: 2250mapleL4-S2010.pdf. Other related and required documents are available at the web site:

- Numerical Solution of First Order DE (typeset, 19 pages, 220k pdf). A resource similar to the textbook, with maple examples and deeper detail. It is for a second reading, in case Edwards-Penney left too many questions unanswered.
- Sample Report for 2.4-3 (pdf 3 pages, 350k). This outline might be useful, if you are wondering which details to include.
- Numerical DE coding hints, TEXT Document (1 page, 2k). A modified portion of this document is appended here, for completeness. The web copy 2250mapleL4-S2010.txt is suited for mouse copying.
- Sample maple code for Euler, Heun, RK4 (maple worksheet). Use 2250mapleL4-S2010-snips.mws to load maple sample code without mouse copying. Includes error code and exact solution examples.

Problem Exam Review ER-2. (E & P Exercise 2.4-12, Symbolic Solution)
The exact symbolic solution of \(y' = \frac{1}{2}(y - 1)^2 \), \(y(0) = 2 \) is \(y = \frac{x - 4}{x - 2} \). Using methods from the textbook, Chapter 1, display the details of the derivation for this symbolic solution, plus a full answer check.

The answer is used in the problems of maple Lab 4, in order to check the calculations.

☐ This problem was submitted earlier, before Exam 1.

☐ This problem was not submitted earlier. The solution will be submitted with maple lab 4.
Problem L4.1. (E & P Exercise 2.4-12)

Consider the initial value problem \(y' = \frac{1}{2}(y-1)^2, y(0) = 2 \) with symbolic solution \(y = \frac{x-4}{x-2} \). Apply Euler’s method to produce two dot tables, as follows. The first has 101 rows, \(h = 0.01 \). The second has 201 rows, \(h = 0.005 \). Do not print the dot tables, just print the computer code that made them. Reproduce, by transcribing computer data, the table below, and fill in missing digits. Follow the sample report for Exercise 2.4-3. Reference Exam Review ER-2 for the symbolic solution, excluding any derivation or answer check. Don’t hand-check the dot tables. Instead, test the answers against the symbolic solution, as suggested in the table below. For the percentage error with \(h = 0.005 \), use the equation

\[
\text{Error(approx, actual)} = 100 \left| \frac{\text{approx} - \text{actual}}{\text{actual}} \right| .
\]

<table>
<thead>
<tr>
<th>(x)</th>
<th>0.0</th>
<th>0.2</th>
<th>0.4</th>
<th>0.6</th>
<th>0.8</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)-approx, (h = 0.01)</td>
<td>2.000000000</td>
<td>2.110463386</td>
<td>2.248277770</td>
<td>2.424977771</td>
<td>2.659668277</td>
<td>2.986417777</td>
</tr>
<tr>
<td>(y)-approx, (h = 0.005)</td>
<td>2.000000000</td>
<td>2.110787345</td>
<td>2.249787345</td>
<td>2.426777777</td>
<td>2.663477777</td>
<td>2.993177777</td>
</tr>
<tr>
<td>actual (y(x))</td>
<td>2.000000000</td>
<td>2.111111111</td>
<td>2.250000000</td>
<td>2.428571429</td>
<td>2.666666667</td>
<td>3.000000000</td>
</tr>
<tr>
<td>Error(approx,actual)</td>
<td>0.0000%</td>
<td>0.015%</td>
<td>0.038%</td>
<td>0.07%</td>
<td>0.13%</td>
<td>0.22%</td>
</tr>
</tbody>
</table>

Problem L4.2. (E & P Exercise 2.5-12)

Consider the initial value problem \(y' = \frac{1}{2}(y-1)^2, y(0) = 2 \) with symbolic solution \(y = \frac{x-4}{x-2} \). Apply Heun’s method to produce two dot tables, as follows. The first has 101 rows, \(h = 0.01 \). The second has 201 rows, \(h = 0.005 \). Do not print the dot tables, just print the computer code that made them. Reproduce, by transcribing computer data, the table below, and fill in missing digits. Follow the sample report for Exercise 2.4-3 as in problem L4.1 above. Don’t hand-check the dot tables. Instead, test the tables against the symbolic solution, as suggested in the table below.

<table>
<thead>
<tr>
<th>(x)</th>
<th>0.0</th>
<th>0.2</th>
<th>0.4</th>
<th>0.6</th>
<th>0.8</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)-approx, (h = 0.01)</td>
<td>2.000000000</td>
<td>2.111107371</td>
<td>2.249999085</td>
<td>2.428571429</td>
<td>2.666666667</td>
<td>2.999999996</td>
</tr>
<tr>
<td>(y)-approx, (h = 0.005)</td>
<td>2.000000000</td>
<td>2.111111111</td>
<td>2.250000000</td>
<td>2.428571429</td>
<td>2.666666667</td>
<td>3.000000000</td>
</tr>
<tr>
<td>actual (y(x))</td>
<td>2.000000000</td>
<td>2.111111111</td>
<td>2.250000000</td>
<td>2.428571429</td>
<td>2.666666667</td>
<td>3.000000000</td>
</tr>
<tr>
<td>Error(approx,actual)</td>
<td>0.0000%</td>
<td>0.0000%</td>
<td>0.0000%</td>
<td>0.0000%</td>
<td>0.0000%</td>
<td>0.0000%</td>
</tr>
</tbody>
</table>

Problem L4.3. (E & P Exercise 2.6-12)

The actual solution of \(y' = \frac{1}{2}(y-1)^2, y(0) = 2 \) is \(y = \frac{x-4}{x-2} \). Apply RK4 method to produce two dot tables, as follows. The first has 101 rows, \(h = 0.01 \). The second has 201 rows, \(h = 0.005 \). Do not print the dot tables, just print the computer code that made them. Reproduce, by transcribing computer data, the table below, and fill in missing digits. Follow the sample report for Exercise 2.4-3 as in problem L4.2 above. Don’t hand-check the dot tables. Instead, test the tables against the symbolic solution, as suggested in the table below.

<table>
<thead>
<tr>
<th>(x)</th>
<th>0.0</th>
<th>0.2</th>
<th>0.4</th>
<th>0.6</th>
<th>0.8</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)-approx, (h = 0.01)</td>
<td>2.000000000</td>
<td>2.111111111</td>
<td>2.250000000</td>
<td>2.428571429</td>
<td>2.666666667</td>
<td>2.999999996</td>
</tr>
<tr>
<td>(y)-approx, (h = 0.005)</td>
<td>2.000000000</td>
<td>2.111111111</td>
<td>2.250000000</td>
<td>2.428571429</td>
<td>2.666666667</td>
<td>3.000000000</td>
</tr>
<tr>
<td>actual (y(x))</td>
<td>2.000000000</td>
<td>2.111111111</td>
<td>2.250000000</td>
<td>2.428571429</td>
<td>2.666666667</td>
<td>3.000000000</td>
</tr>
<tr>
<td>Error(approx,actual)</td>
<td>0.000000000%</td>
<td>0.000000047%</td>
<td>0.000000047%</td>
<td>0.0000000123%</td>
<td>0.0000000262%</td>
<td>0.0000000600%</td>
</tr>
</tbody>
</table>
Warning: These snips of code made for \(y' = 1 - x - y \), \(y(0) = 3 \).
Code computes approx values for \(y(0.1) \) to \(y(1) \).
'Dots' is the list of dots for connect-the-dots graphics.
==

Euler. Group 1, initialize.
\(f(x, y) = 1 - x - y \):
\(x_0 = 0 \), \(y_0 = 3 \), \(h = 0.1 \), \(n = 200 \):

Group 2, repeat \(n \) times. Euler’s method
for \(i \) from 1 to \(n \) do
\(Y = y_0 + h \cdot f(x_0, y_0) \);
\(x_0 = x_0 + h \), \(y_0 = Y \), \(Dots := Dots, [x_0, y_0] \);
od:

Group 3, display relevant dots and plot.
\(Exact(x) = 2 - x + e^{-x} \);
\(P(x, y) = \frac{100 \cdot |Exact(y) - approx(y)|}{|Exact(y)|} \):
\(m = 40 \), \(X = \{ seq(1 + m \cdot j, j = 0..n/m) \} \):
print("Dots"), seq(Dots[k], k = X);
print("Exact"), seq(Exact(Dots[k][1]), k = X);
print("Error"), seq(P(Exact(Dots[k][1]), Dots[k][2]), k = X);
plot([Dots]);

==

Heun. Group 1, initialize.
\(f(x, y) = 1 - x - y \):
\(x_0 = 0 \), \(y_0 = 3 \), \(h = 0.1 \), \(n = 200 \):

Group 2, repeat \(n \) times. Heun method.
for \(i \) from 1 to \(n \) do
\(Y_1 = y_0 + h \cdot f(x_0, y_0) \);
\(Y = y_0 + h \cdot \frac{f(x_0, y_0) + f(x_0 + h, Y_1)}{2} \);
\(x_0 = x_0 + h \), \(y_0 = Y \), \(Dots := Dots, [x_0, y_0] \);
od:

Group 3, display relevant dots and plot.
Dots[1], Dots[2], seq(Dots[1 + 40 \cdot j], j = 1..n/40);
plot([Dots]);

==

RK4. Group 1, initialize.
\(f(x, y) = 1 - x - y \):
\(x_0 = 0 \), \(y_0 = 3 \), \(h = 0.1 \), \(n = 200 \):

Group 2, repeat \(n \) times. RK4 method.
for \(i \) from 1 to \(n \) do
\(k_1 = h \cdot f(x_0, y_0) \);
\(k_2 = h \cdot f(x_0 + h/2, y_0 + k_1/2) \);
\(k_3 = h \cdot f(x_0 + h/2, y_0 + k_2/2) \);
\(k_4 = h \cdot f(x_0 + h, y_0 + k_3) \);
\(Y = y_0 + \frac{k_1 + 2 \cdot k_2 + 2 \cdot k_3 + k_4}{6} \);
\(x_0 = x_0 + h \), \(y_0 = Y \), \(Dots := Dots, [x_0, y_0] \);
od:

Group 3, display some dots and plot.
Dots[1], Dots[2], Dots[101];
plot([Dots]);

Code snips for exact/error reports
==

Making multiple curves on one plot
==

\(Exact(x) = 2 - x + e^{-x} \): # An exact solution
plot({Exact(x), [Dots]}, x = 0..1/2); # plot exact and approx solutions
How to create a Dots table for the exact solution
==
Exact := x -> 2-x+exp(-x): n := 10:
ExactDots := seq([Dots[j][1], Exact(Dots[j][1])], j = 1..n+1);

How to define and print percentage relative error:
==
P := unapply(evalf(100*abs(exact-approx)/abs(exact)), (exact, approx));
ExactVal := Exact(Dots[11][1]): # Compute exact y-value for x=0.5
ApproxVal := Dots[11][2]: # Get Euler approx y-value for x=0.5
P(ExactVal, ApproxVal); # print percent relative error

How to create a Dots table for percentage error
==
Pdots := seq([Dots[j][1], P(Exact(Dots[j][1]), Dots[j][2])], j = 1..11);

Printing results and tables
Make tables with a pencil, it saves time.
==
To extract and print items 1,101,201,1001 from a list:
Dots1 := Dots[1], Dots[101], Dots[201], Dots[1001];

End of Maple Lab 4: Numerical Methods.