2250 Midterm Exam 2, Ver 1
Wednesday, 17 March, 2010

Instructions: This in-class exam is 50 minutes. Up to 30 extra minutes will be given. No calculators, notes, tables or books. No answer check is expected. Details count 75%. The answer counts 25%.

1. (The 3 Possibilities with Symbols)
 Let a, b and c denote constants and consider the system of equations
 \[
 \begin{pmatrix}
 1 & b + c & a \\
 3 & 2b + 4c & a \\
 -1 & -b - c & 0 \\
 \end{pmatrix}
 \begin{pmatrix}
 x \\
 y \\
 z \\
 \end{pmatrix}
 =
 \begin{pmatrix}
 a^2 - a \\
 a^2 - 2a \\
 a \\
 \end{pmatrix}
 \]

 (a) [40%] Determine a, b and c such that the system has a unique solution.
 \[a(-b+c) \neq 0\]

 (b) [30%] Determine a, b and c such that the system has no solution.
 \[-b+c=0, \ a \neq 0\]

 (c) [30%] Determine a, b and c such that the system has infinitely many solutions.
 \[a = -b+c = 0\]

 \[
 \begin{pmatrix}
 1 & b + c & a \\
 3 & 2b + 4c & a \\
 -1 & -b - c & 0 \\
 \end{pmatrix}
 \begin{pmatrix}
 a^2 - a \\
 a^2 - 2a \\
 a \\
 \end{pmatrix}
 \]

 \[
 \begin{pmatrix}
 0 & -b + c & -2a \\
 -1 & -b - c & 0 \\
 \end{pmatrix}
 \begin{pmatrix}
 a^2 \\
 -a^2 + a \\
 \end{pmatrix}
 \text{combo(1, 2, -3)}
 \]

 \[
 \begin{pmatrix}
 0 & -b + c & -2a \\
 0 & 0 & a \\
 \end{pmatrix}
 \begin{pmatrix}
 a^3 \\
 -a^2 + a \\
 \end{pmatrix}
 \text{combo(1, 3, 1)}
 \]

 \[
 \begin{pmatrix}
 0 & -b + c & 0 \\
 0 & 0 & a \\
 \end{pmatrix}
 \begin{pmatrix}
 a^2 \\
 a \\
 \end{pmatrix}
 \text{combo(3, 2, 2)}
 \]

 \[
 \begin{pmatrix}
 0 & 2b & a \\
 0 & 0 & a \\
 0 & 0 & a \\
 \end{pmatrix}
 \begin{pmatrix}
 a^2 - a \\
 a \\
 a \\
 \end{pmatrix}
 \text{when } -b+c = 0
 \]

 - Many sols in $a=0$
 No sol (signal eq $0 = a$) when $a \neq 0$
 Last eq is not a signal equation. It says $0=0$
 or else $z = a$.

Use this page to start your solution. Attach extra pages as needed, then staple.
2. (Vector Spaces) Do all parts.

(a) [10%] True or false: There is a subspace \(S \) of \(\mathbb{R}^3 \) which does not contain the zero vector.

(b) [10%] True or false: The set of solutions \(\mathbf{x} \) in \(\mathbb{R}^3 \) of a matrix equation \(A\mathbf{x} = \mathbf{0} \) is a subspace of \(\mathbb{R}^3 \).

(c) [10%] True or false: Equations \(xy = 0 \), \(y + z = 0 \) define a subspace in \(\mathbb{R}^3 \).

(d) [10%] True or false: Equations \(x + 3y = 0 \), \(2y + z = 0 \) define a subspace in \(\mathbb{R}^3 \).

(e) [10%] State one theorem, without proof, that concludes that a subset \(S \) of a vector space \(V \) is a subspace of \(V \).

(f) [50%] Find a basis of 4-vectors for the subspace of \(\mathbb{R}^4 \) given by the system of restriction equations

\[
\begin{align*}
2x_1 + 10x_2 - 3x_3 + 4x_4 &= 0, \\
x_1 + 4x_2 - 2x_3 + 2x_4 &= 0, \\
4x_2 + 2x_3 &= 0, \\
2x_1 + 12x_2 - 2x_3 + 4x_4 &= 0.
\end{align*}
\]

(e) If \(S = \text{span} \{ \mathbf{v}_1, \ldots, \mathbf{v}_k \} \), then \(S \) is a subspace of \(V \).

Kernel Theorem. Thm 2 in 4.2.

Subspace criterion. Thm 1 in 4.2.

(f) \(\text{rref} \left(\begin{array}{cccc|c}
2 & 10 & -3 & 4 & 0 \\
1 & 4 & -2 & 2 & 0 \\
0 & 4 & 2 & 0 & 0 \\
2 & 12 & -2 & 4 & 0 \\
\end{array} \right) = \left(\begin{array}{cccc|c}
1 & 0 & -4 & 2 & 0 \\
0 & 1 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{array} \right) \)

Last frame algorithm \(\Rightarrow \) \[
\begin{align*}
\begin{cases}
x_1 &= 4t_1 - 2t_2 \\
x_2 &= -\frac{1}{2}t_1 \\
x_3 &= t_1 \\
x_4 &= t_2
\end{cases}
\end{align*}
\]

Vector basis = \[
\begin{pmatrix}
4 \\
-\frac{1}{2} \\
0 \\
1
\end{pmatrix}
\begin{pmatrix}
-2 \\
0 \\
0 \\
1
\end{pmatrix}
\]

Use this page to start your solution. Attach extra pages as needed, then staple.
3. (Independence and Dependence) Do all parts.
 (a) [10%] State a dependence test for three vectors.
 (b) [40%] Let v_1, v_2, v_2, v_4 denote the columns of the matrix
 \[
 A = \begin{pmatrix}
 1 & 0 & 2 & 1 \\
 2 & 0 & 5 & 1 \\
 1 & 0 & 3 & 0 \\
 -2 & 0 & -6 & 0
 \end{pmatrix}
 \]
 Display the details of an independence or dependence test for the vectors v_1, v_2, v_2, v_4 and report the result.
 (c) [40%] Extract from the list below a largest set of independent vectors.
 \[
 v_1 = \begin{pmatrix}
 0 \\
 0 \\
 0 \\
 0
 \end{pmatrix}, \quad v_2 = \begin{pmatrix}
 2 \\
 0 \\
 0 \\
 -2
 \end{pmatrix}, \quad v_3 = \begin{pmatrix}
 0 \\
 1 \\
 0 \\
 1
 \end{pmatrix}, \quad v_4 = \begin{pmatrix}
 0 \\
 3 \\
 0 \\
 3
 \end{pmatrix}, \quad v_5 = \begin{pmatrix}
 0 \\
 0 \\
 0 \\
 2
 \end{pmatrix}, \quad v_6 = \begin{pmatrix}
 0 \\
 3 \\
 0 \\
 5
 \end{pmatrix}
 \]
 (d) [10%] Extract from the list in (c) above a largest set of dependent vectors.
 (a) Rank Test, Determinant Test, pivot removal
 v_1, v_2, v_3 independent fixed vectors \iff rank of augmented matrix = 3
 v_1, v_2, v_3 dependent fixed vectors \iff rank of augmented matrix $\neq 3$
 (b) $ref\left(\begin{pmatrix}
 1 & 0 & 2 & 1 \\
 2 & 0 & 5 & 1 \\
 -2 & 0 & 3 & 0
 \end{pmatrix}\right) = \begin{pmatrix}
 1 & 0 & 0 & 3 \\
 0 & 1 & -1 & 0 \\
 0 & 0 & 0 & 0
 \end{pmatrix}$ \implies dependent, because rank = 2
 or, determinant = 0 \implies dependent, because 0 a column of zeros.
 (c) $ref\left(\begin{pmatrix}
 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0
 \end{pmatrix}\right) = \begin{pmatrix}
 0 & 1 & 1 & 1 & 1 \\
 0 & 0 & 0 & 1 & v_3 \\
 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0
 \end{pmatrix}$ pivots = 2, 4
 $\{v_2, v_4\}$ = largest independent set
 (d) Non-pivots will form a dependent set of four vectors v_1, v_3, v_5, v_6.
 Any set containing a dependent subset is also dependent.
 The largest dependent subset = whole set = $\{v_1, v_2, v_3, v_4, v_5, v_6\}$

Use this page to start your solution. Attach extra pages as needed, then staple.
4. (Determinants) Do all parts.
 (a) [20%] State the determinant product rule.
 (b) [20%] Assume given 3×3 matrices A, B. Suppose $E_3B = E_2E_1A$ and E_1, E_2, E_3 are elementary matrices representing respectively a swap, a combination, and a multiply by $-1/5$. Assume $\det(A) = 2$. Find $\det(B)$.
 (c) [20%] Determine all values of x for which B^{-1} fails to exist, where B is the transpose of the matrix

 \[
 A = \begin{pmatrix}
 2 & 0 & 2 \\
 3x & 0 & 10 \\
 1 & 2x - 1 & 3x + 7
 \end{pmatrix}
 \]
 (d) [40%] Apply the adjugate [adjoint] formula for the inverse to find the value of the entry in row 3, column 4 of A^{-1}, given A below. Other methods are not acceptable.

 \[
 A = \begin{pmatrix}
 1 & 1 & 1 & 1 \\
 1 & 2 & 0 & 1 \\
 -1 & 0 & -1 & 1 \\
 1 & 2 & 0 & 2
 \end{pmatrix}
 \]

 (a) If C, D are $n \times n$ matrices, then $\det(CD) = \det(C)\det(D)$.
 (b) $|E_1| = -1$, $|E_2| = 1$, $|E_3| = -1/5$

 \[
 E_3B = E_2E_1A \Rightarrow \quad |E_3||B| = |E_2||E_1||A|
 \]

 \[
 \Rightarrow \quad -\frac{1}{5} |B| = (1)(-1)(2)
 \]

 \[
 |B| = 10
 \]

 (c) B^{-1} fails to exist \iff $0 = |B| = |B^T| = |(A^T)^T| = |A|$

 \[
 |A| = (-1)(2x-1)\begin{vmatrix}
 2 & 2 \\
 3x & 10
 \end{vmatrix}
 \]

 \[
 \text{and} \quad x = \frac{1}{2} \quad \text{so} \quad x = \frac{10}{3}
 \]

 (d) Entry in row 3, col 4 of $A^{-1} = \frac{\text{ cof}(A_{4,3})}{|A|} = \frac{1}{1} \begin{pmatrix}
 1 & -1 & 0 \\
 2 & 1 & -1 \\
 -1 & 0 & -1
 \end{pmatrix} (-1)

 \[
 \text{minor}
 \]

 \[
 \text{cofactor sign}
 \]

 Use this page to start your solution. Attach extra pages as needed, then staple.
5. (Linear Differential Equations) Do all parts.
(a) [20%] Solve for the general solution of $y'' + 4y' + 20y = 0$.
(b) [40%] The characteristic equation is $r^2(r^2 + 2r + 17) = 0$. Find the general solution y of the linear homogeneous constant-coefficient differential equation.
(c) [20%] A second order linear homogeneous differential equation with constant coefficients has two solutions $e^{2x} \cos x$ and $e^{2x}(2 \sin x + 3 \cos x)$. What are the roots of the characteristic equation?
(d) [20%] Circle the functions which can be a solution of a linear homogeneous differential equation with constant coefficients. For example, you would circle $\cos^2 x$ because $\cos^2 x = \frac{1}{2} + \frac{1}{2} \cos(2x)$ is a linear combination of the two solutions 1 and $\cos(2x)$ of the third order equation whose characteristic equation has roots $0, 2i, -2i$.

$$
\begin{align*}
&\begin{array}{cccc}
\exp(2x) & \cos^2 x & \cos(\ln |x|) & \tan x \\
0 & 100 \times & 1/e & \sinh x
\end{array} \\
&\begin{array}{cccc}
\cos 3x & \exp(-x) & \sin^2 x & \sin(x^2)
\end{array}
\end{align*}
$$

(a) $r^2 + 4r + 20 = 0$

$$
(r + 2)^2 + 16 = 0 \\
r = -2 \pm 4i$

$$y = c_1 e^{-2x} \cos(4x) + c_2 e^{-2x} \sin(4x)
$$

(b) $y =$ linear combination of the atoms listed below

- $r = 0, 0, 0$: e^{0x}, xe^{0x}, x^2e^{0x}
- $r = -2, -2$: e^{-2x}, xe^{-2x}
- $r = -1 \pm 4i$: $e^{-x} \cos(4x), e^{-x} \sin(4x)$

(c) $e^{2x} \cos(x)$ is a atom constructed from $2 + i$. The two roots must be $2 + i$ and $2 - i$.

(d) $\sinh(x) = \frac{1}{2} e^x - \frac{1}{2} e^{-x}$ is a linear combination of atoms e^x, e^{-x}

$\sin^2(x) = \frac{1}{2} - \frac{1}{2} \cos(2x)$ is a linear combination of atoms $1, \cos(2x)$.