Systems of Differential Equations

Matrix Methods

- Characteristic Equation
- Cayley-Hamilton
- Cayley-Hamilton Theorem
- An Example
- The Cayley-Hamilton Method for $\mathbf{u}^{\prime}=A \mathbf{u}$
- A Working Rule for Solving $\mathbf{u}^{\prime}=\boldsymbol{A u}$
- Solving $2 \times 2 \mathbf{u}^{\prime}=A u$
- Finding $\overrightarrow{\mathbf{c}}_{\boldsymbol{1}}$ and $\overrightarrow{\mathbf{c}}_{\boldsymbol{2}}$
- A Matrix Method for Finding $\overrightarrow{\mathbf{c}}_{\mathbf{1}}$ and $\overrightarrow{\mathbf{c}}_{\boldsymbol{2}}$
- Other Representations of the Solution \mathbf{u}
- Another General Solution of $\mathbf{u}^{\prime}=\boldsymbol{A u}$
- Change of Basis Equation

Characteristic Equation

Definition 1 (Characteristic Equation)

Given a square matrix \boldsymbol{A}, the characteristic equation of \boldsymbol{A} is the polynomial equation

$$
\operatorname{det}(A-r I)=0
$$

The determinant $\operatorname{det}(\boldsymbol{A}-\boldsymbol{r I})$ is formed by subtracting \boldsymbol{r} from the diagonal of \boldsymbol{A}. The polynomial $\boldsymbol{p}(\boldsymbol{r})=\operatorname{det}(\boldsymbol{A}-\boldsymbol{r I})$ is called the characteristic polynomial.

- If \boldsymbol{A} is 2×2, then $\boldsymbol{p}(\boldsymbol{r})$ is a quadratic.
- If A is 3×3, then $p(r)$ is a cubic.
- The determinant is expanded by the cofactor rule, in order to preserve factorizations.

Characteristic Equation Examples

Create $\operatorname{det}(\boldsymbol{A}-\boldsymbol{r} \boldsymbol{I})$ by subtracting \boldsymbol{r} from the diagonal of \boldsymbol{A}. Evaluate by the cofactor rule.

$$
\begin{gathered}
A=\left(\begin{array}{ll}
2 & 3 \\
0 & 4
\end{array}\right), \quad p(r)=\left|\begin{array}{cc}
2-r & 3 \\
0 & 4-r
\end{array}\right|=(2-r)(4-r) \\
A=\left(\begin{array}{lll}
2 & 3 & 4 \\
0 & 5 & 6 \\
0 & 0 & 7
\end{array}\right), \quad p(r)=\left|\begin{array}{ccc}
2-r & 3 & 4 \\
0 & 5-r & 6 \\
0 & 0 & 7-r
\end{array}\right|=(2-r)(5-r)(7-r)
\end{gathered}
$$

Cayley-Hamilton

Theorem 1 (Cayley-Hamilton)

A square matrix \boldsymbol{A} satisfies its own characteristic equation.
If $p(r)=(-r)^{n}+a_{n-1}(-r)^{n-1}+\cdots a_{0}$, then the result is the equation

$$
(-A)^{n}+a_{n-1} A^{n-1}+\cdots+a_{1} A+a_{0} I=0
$$

where \boldsymbol{I} is the $\boldsymbol{n} \times \boldsymbol{n}$ identity matrix and $\mathbf{0}$ is the $\boldsymbol{n} \times \boldsymbol{n}$ zero matrix.

Cayley-Hamilton Example

Assume

$$
A=\left(\begin{array}{lll}
2 & 3 & 4 \\
0 & 5 & 6 \\
0 & 0 & 7
\end{array}\right)
$$

Then

$$
p(r)=\left|\begin{array}{ccc}
2-r & 3 & 4 \\
0 & 5-r & 6 \\
0 & 0 & 7-r
\end{array}\right|=(2-r)(5-r)(7-r)
$$

and the Cayley-Hamilton Theorem says that

$$
(2 I-A)(5 I-A)(7 I-A)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

Cayley-Hamilton Method

Theorem 2 (Cayley-Hamilton Method for $\mathbf{u}^{\prime}=A u$)

A component function $\boldsymbol{u}_{k}(t)$ of the vector solution $\mathbf{u}(t)$ for $\mathbf{u}^{\prime}(t)=A u(t)$ is a solution of the nth order linear homogeneous constant-coefficient differential equation whose characteristic equation is $\operatorname{det}(\boldsymbol{A}-\boldsymbol{r I})=0$.

Let $\operatorname{atom}_{1}, \ldots$, atom $_{n}$ denote the atoms constructed from the characteristic equation $\operatorname{det}(\boldsymbol{A}-r \boldsymbol{I})=0$ by Euler's Theorem. Then constant vectors $\mathrm{c}_{1}, \ldots, \mathrm{c}_{n}$ exist, uniquely determined by A and $\mathbf{u}(0)$, such that

$$
\mathbf{u}(t)=\left(\operatorname{atom}_{1}\right) \overrightarrow{\mathbf{c}}_{1}+\cdots+\left(\operatorname{atom}_{n}\right) \overrightarrow{\mathbf{c}}_{n}
$$

A Working Rule for Solving $\mathbf{u}^{\prime}=A \mathbf{u}$
The Theorem says that $\mathbf{u}^{\prime}=A \mathbf{u}$ can be solved from the formula

$$
\mathbf{u}(t)=\left(\text { atom }_{1}\right) \overrightarrow{\mathbf{c}}_{1}+\cdots+\left(\text { atom }_{n}\right) \overrightarrow{\mathbf{c}}_{n}
$$

- The problem of solving $\mathbf{u}^{\prime}=\boldsymbol{A u}$ is reduced to finding the vectors $\overrightarrow{\mathbf{c}}_{1}, \ldots, \overrightarrow{\mathbf{c}}_{n}$.
- The vectors $\overrightarrow{\mathbf{c}}_{1}, \ldots, \overrightarrow{\mathbf{c}}_{\boldsymbol{n}}$ are not arbitrary, but instead uniquely determined by \boldsymbol{A} and $u(0)$!

A 2×2 Illustration

Let us solve $\overrightarrow{\mathbf{u}}^{\prime}=\boldsymbol{A} \overrightarrow{\mathbf{u}}$ when \boldsymbol{A} is the non-triangular matrix

$$
A=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)
$$

The characteristic polynomial is

$$
\left.\begin{array}{cc}
1-r & 2 \\
2 & 1-r
\end{array} \right\rvert\,=(1-r)^{2}-4=(r+1)(r-3)
$$

Euler's theorem implies solution atoms $e^{-t}, e^{3 t}$.
Then $\overrightarrow{\mathbf{u}}$ is a vector linear combination of the solution atoms,

$$
\overrightarrow{\mathbf{u}}=e^{-t} \overrightarrow{\mathbf{c}}_{1}+e^{3 t} \overrightarrow{\mathbf{c}}_{2}
$$

Finding $\overrightarrow{\mathbf{c}}_{\mathbf{1}}$ and $\overrightarrow{\mathbf{c}}_{\boldsymbol{2}}$

To solve for \mathbf{c}_{1} and \mathbf{c}_{2}, differentiate the above relation. Replace $\overrightarrow{\mathbf{u}}^{\prime}$ by $\boldsymbol{A} \overrightarrow{\mathbf{u}}$, then set $\boldsymbol{t}=\mathbf{0}$ and $\overrightarrow{\mathbf{u}}(\mathbf{0})=\overrightarrow{\mathbf{u}}_{\mathbf{0}}$ in the two formulas to obtain the relations

$$
\begin{aligned}
\overrightarrow{\mathbf{u}}_{0} & =e^{0} \overrightarrow{\mathbf{c}}_{1}+e^{0} \overrightarrow{\mathbf{c}}_{2} \\
A \overrightarrow{\mathbf{u}}_{0} & =-e^{0} \overrightarrow{\mathbf{c}}_{1}+3 e^{0} \overrightarrow{\mathbf{c}}_{2}
\end{aligned}
$$

Adding the equations gives $\overrightarrow{\mathbf{u}}_{0}+\boldsymbol{A} \overrightarrow{\mathbf{u}}_{\mathbf{0}}=\mathbf{4} \overrightarrow{\mathbf{c}}_{\mathbf{2}}$ and then

$$
\overrightarrow{\mathbf{c}}_{1}=\frac{3}{4} \mathbf{u}_{0}-\frac{1}{4} A u_{0}, \quad \overrightarrow{\mathbf{c}}_{2}=\frac{1}{4} \mathbf{u}_{0}+\frac{1}{4} A u_{0}
$$

A Matrix Method for Finding $\overrightarrow{\mathbf{c}}_{\mathbf{1}}$ and $\overrightarrow{\mathbf{c}}_{\mathbf{2}}$

The Cayley-Hamilton Method produces a unique solution for $\mathbf{c}_{\mathbf{1}}, \mathbf{c}_{\mathbf{2}}$ because the coefficient matrix

$$
\left(\begin{array}{rr}
e^{0} & e^{0} \\
-e^{0} & 3 e^{0}
\end{array}\right)
$$

is exactly the Wronskian \boldsymbol{W} of the basis of atoms evaluated at $\boldsymbol{t}=\mathbf{0}$. This same fact applies no matter the number of coefficients $\overrightarrow{\mathbf{c}}_{1}, \overrightarrow{\mathbf{c}}_{2}, \ldots$ to be determined.

The answer for $\overrightarrow{\mathbf{c}}_{\boldsymbol{1}}$ and $\overrightarrow{\mathbf{c}}_{\boldsymbol{2}}$ can be written in matrix form in terms of the transpose $\boldsymbol{W}^{\boldsymbol{T}}$ of the Wronskian matrix as

$$
\operatorname{aug}\left(\overrightarrow{\mathrm{c}}_{1}, \overrightarrow{\mathrm{c}}_{2}\right)=\operatorname{aug}\left(\overrightarrow{\mathrm{u}}_{0}, A \overrightarrow{\mathrm{u}}_{0}\right)\left(W^{T}\right)^{-1}
$$

Solving a 2×2 Initial Value Problem

$$
\overrightarrow{\mathbf{u}}^{\prime}=A \overrightarrow{\mathbf{u}}, \quad \overrightarrow{\mathbf{u}}(0)=\binom{-1}{2}, \quad A=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)
$$

Then $\overrightarrow{\mathbf{u}}_{0}=\binom{-1}{2}, A \overrightarrow{\mathbf{u}}_{0}=\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)\binom{-1}{2}=\binom{3}{0}$ and

$$
\operatorname{aug}\left(\overrightarrow{\mathrm{c}}_{1}, \overrightarrow{\mathrm{c}}_{2}\right)=\left(\begin{array}{rr}
-1 & 3 \\
2 & 0
\end{array}\right)\left(\left(\begin{array}{rr}
1 & 1 \\
-1 & 3
\end{array}\right)^{T}\right)^{-1}=\binom{-3 / 2}{3 / 2}
$$

The solution of the initial value problem is

$$
\overrightarrow{\mathbf{u}}(t)=e^{-t}\binom{-3 / 2}{3 / 2}+e^{3 t}\binom{1 / 2}{1 / 2}=\binom{-\frac{3}{2} e^{-t}+\frac{1}{2} e^{3 t}}{\frac{3}{2} e^{-t}+\frac{1}{2} e^{3 t}}
$$

Other Representations of the Solution u

\qquad
Let $\boldsymbol{y}_{1}(\boldsymbol{t}), \ldots, \boldsymbol{y}_{n}(\boldsymbol{t})$ be a solution basis for the \boldsymbol{n} th order linear homogeneous constantcoefficient differential equation whose characteristic equation is $\operatorname{det}(\boldsymbol{A}-\boldsymbol{r I})=0$.

Consider the solution basis atom $_{1}$, atom $_{2}, \ldots$, atom $_{n}$. Each atom is a linear combination of $\mathbf{y}_{1}, \ldots, \mathbf{y}_{n}$. Replacing the atoms in the formula

$$
\mathbf{u}(t)=\left(\operatorname{atom}_{1}\right) \mathbf{c}_{1}+\cdots+\left(\text { atom }_{n}\right) \mathbf{c}_{n}
$$

by these linear combinations implies there are constant vectors d_{1}, \ldots, d_{n} such that

$$
\mathbf{u}(t)=y_{1}(t) \overrightarrow{\mathrm{d}}_{1}+\cdots+y_{n}(t) \overrightarrow{\mathrm{d}}_{n}
$$

Another General Solution of $\mathbf{u}^{\prime}=\boldsymbol{A u}$
Theorem 3 (General Solution)
The unique solution of $\mathbf{u}^{\prime}=A \mathbf{u}, \mathbf{u}(0)=\mathbf{u}_{0}$ is

$$
\mathbf{u}(t)=\phi_{1}(t) \mathbf{u}_{0}+\phi_{2}(t) A \mathbf{u}_{0}+\cdots+\phi_{n}(t) A^{n-1} \mathbf{u}_{0}
$$

where $\phi_{1}, \ldots, \phi_{n}$ are linear combinations of atoms constructed from roots of the characteristic equation $\operatorname{det}(A-r I)=0$, such that
$\left.\operatorname{Wronskian}\left(\phi_{1}(t), \ldots, \phi_{n}(t)\right)\right|_{t=0}=I$.

Proof of the theorem

Proof: Details will be given for $\boldsymbol{n}=3$. The details for arbitrary matrix dimension \boldsymbol{n} is an easy modification of this proof. The Wronskian condition implies $\phi_{1}, \phi_{2}, \phi_{3}$ are independent. Then each atom constructed from the characteristic equation is a linear combination of $\phi_{1}, \phi_{2}, \phi_{3}$. It follows that the unique solution u can be written for some vectors d_{1}, d_{2}, d_{3} as

$$
\mathbf{u}(t)=\phi_{1}(t) \overrightarrow{\mathrm{d}}_{1}+\phi_{2}(t) \overrightarrow{\mathrm{d}}_{2}+\phi_{3}(t) \overrightarrow{\mathrm{d}}_{3}
$$

Differentiate this equation twice and then set $t=0$ in all 3 equations. The relations $\mathbf{u}^{\prime}=A u$ and $\mathbf{u}^{\prime \prime}=A \mathbf{u}^{\prime}=$ $A A u$ imply the $\mathbf{3}$ equations

$$
\begin{gathered}
\mathrm{u}_{0}=\phi_{1}(0) \mathrm{d}_{1}+\phi_{2}(0) \mathrm{d}_{2}+\phi_{3}(0) \mathrm{d}_{3} \\
A \mathrm{u}_{0}=\phi_{1}^{\prime}(0) \mathrm{d}_{1}+\phi_{2}^{\prime}(0) \mathrm{d}_{2}+\phi_{3}^{\prime}(0) \mathrm{d}_{3} \\
A^{2} \mathrm{u}_{0}=\phi_{1}^{\prime \prime}(0) \mathrm{d}_{1}+\phi_{2}^{\prime \prime}(0) \mathrm{d}_{2}+\phi_{3}^{\prime \prime}(0) \mathrm{d}_{3}
\end{gathered}
$$

Because the Wronskian is the identity matrix I, then these equations reduce to

$$
\begin{gathered}
\mathbf{u}_{0}=1 \mathbf{d}_{1}+0 \mathrm{~d}_{2}+0 \mathrm{~d}_{3} \\
\boldsymbol{A u _ { 0 }}=0 \mathrm{~d}_{1}+\mathbf{1 d}_{2}+0 \mathrm{~d}_{3} \\
\boldsymbol{A}^{2} \mathbf{u}_{0}=0 \mathrm{~d}_{1}+0 \mathrm{~d}_{2}+\mathbf{1} \mathbf{d}_{3}
\end{gathered}
$$

which implies $\mathrm{d}_{1}=\mathrm{u}_{0}, \mathrm{~d}_{2}=A \mathrm{u}_{0}, \mathrm{~d}_{3}=A^{2} \mathrm{u}_{0}$.
The claimed formula for $\mathbf{u}(t)$ is established and the proof is complete.

Change of Basis Equation

\qquad
Illustrated here is the change of basis formula for $\boldsymbol{n}=3$. The formula for general \boldsymbol{n} is similar.
Let $\phi_{1}(t), \phi_{2}(t), \phi_{3}(t)$ denote the linear combinations of atoms obtained from the vector formula

$$
\left(\phi_{1}(t), \phi_{2}(t), \phi_{3}(t)\right)=\left(\operatorname{atom}_{1}(t), \operatorname{atom}_{2}(t), \operatorname{atom}_{3}(t)\right) C^{-1}
$$

where

$$
C=\text { Wronskian }\left(\operatorname{atom}_{1}, \text { atom }_{2}, \text { atom }_{3}\right)(0)
$$

The solutions $\phi_{1}(t), \phi_{2}(t), \phi_{3}(t)$ are called the principal solutions of the linear homogeneous constant-coefficient differential equation constructed from the characteristic equation $\operatorname{det}(\boldsymbol{A}-\boldsymbol{r} \boldsymbol{I})=0$. They satisfy the initial conditions

$$
\operatorname{Wronskian}\left(\phi_{1}, \phi_{2}, \phi_{3}\right)(0)=I
$$

