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Characteristic Equation

Definition 1 (Characteristic Equation)
Given a square matrixA, the characteristic equation ofA is the polynomial equation

det(A− rI) = 0.

The determinant det(A− rI) is formed by subtracting r from the diagonal ofA.
The polynomial p(r) = det(A− rI) is called the characteristic polynomial.

• IfA is 2× 2, then p(r) is a quadratic.

• IfA is 3× 3, then p(r) is a cubic.

• The determinant is expanded by the cofactor rule, in order to preserve factorizations.



Characteristic Equation Examples

Create det(A− rI) by subtracting r from the diagonal ofA.
Evaluate by the cofactor rule.

A =

(
2 3
0 4

)
, p(r) =

∣∣∣∣ 2− r 3
0 4− r

∣∣∣∣ = (2− r)(4− r)

A =

 2 3 4
0 5 6
0 0 7

 , p(r) =

∣∣∣∣∣∣
2− r 3 4

0 5− r 6
0 0 7− r

∣∣∣∣∣∣ = (2−r)(5−r)(7−r)



Cayley-Hamilton

Theorem 1 (Cayley-Hamilton)
A square matrix A satisfies its own characteristic equation.

If p(r) = (−r)n + an−1(−r)n−1 + · · · a0, then the result is the equation

(−A)n + an−1A
n−1 + · · ·+ a1A+ a0I = 0,

where I is the n× n identity matrix and 0 is the n× n zero matrix.



Cayley-Hamilton Example

Assume

A =

 2 3 4
0 5 6
0 0 7


Then

p(r) =

∣∣∣∣∣∣
2− r 3 4

0 5− r 6
0 0 7− r

∣∣∣∣∣∣ = (2− r)(5− r)(7− r)

and the Cayley-Hamilton Theorem says that

(2I −A)(5I −A)(7I −A) =

 0 0 0
0 0 0
0 0 0

 .



Cayley-Hamilton Method

Theorem 2 (Cayley-Hamilton Method for u′ = Au)
A component function uk(t) of the vector solution u(t) for u′(t) = Au(t) is
a solution of the nth order linear homogeneous constant-coefficient differential
equation whose characteristic equation is det(A− rI) = 0.

Let atom1, . . . , atomn denote the atoms constructed from the characteristic equa-
tion det(A − rI) = 0 by Euler’s Theorem. Then constant vectors c1, . . . , cn
exist, uniquely determined by A and u(0), such that

u(t) = (atom1)~c1 + · · ·+ (atomn)~cn



A Working Rule for Solving u′ = Au

The Theorem says that u′ = Au can be solved from the formula

u(t) = (atom1)~c1 + · · ·+ (atomn)~cn

• The problem of solving u′ = Au is reduced to finding the vectors~c1, . . . ,~cn.

• The vectors~c1, . . . ,~cn are not arbitrary, but instead uniquely determined byA and
u(0)!



A 2× 2 Illustration
Let us solve ~u′ = A~u whenA is the non-triangular matrix

A =

(
1 2
2 1

)
.

The characteristic polynomial is∣∣∣∣ 1− r 2
2 1− r

∣∣∣∣ = (1− r)2 − 4 = (r + 1)(r − 3).

Euler’s theorem implies solution atoms e−t, e3t.

Then ~u is a vector linear combination of the solution atoms,

~u = e−t~c1 + e3t~c2.



Finding~c1 and~c2

To solve for c1 and c2, differentiate the above relation. Replace~u′ byA~u, then set t = 0
and ~u(0) = ~u0 in the two formulas to obtain the relations

~u0 = e0~c1 + e0~c2

A~u0 = −e0~c1 + 3e0~c2

Adding the equations gives ~u0 +A~u0 = 4~c2 and then

~c1 =
3

4
u0 −

1

4
Au0, ~c2 =

1

4
u0 +

1

4
Au0.



A Matrix Method for Finding~c1 and~c2

The Cayley-Hamilton Method produces a unique solution for c1, c2 because the coefficient
matrix (

e0 e0

−e0 3e0

)
is exactly the Wronskian W of the basis of atoms evaluated at t = 0. This same fact
applies no matter the number of coefficients~c1,~c2, . . . to be determined.

The answer for~c1 and~c2 can be written in matrix form in terms of the transpose W T of
the Wronskian matrix as

aug(~c1,~c2) = aug(~u0, A~u0)(W
T)−1.



Solving a 2× 2 Initial Value Problem

~u′ = A~u, ~u(0) =

(
−1

2

)
, A =

(
1 2
2 1

)
.

Then ~u0 =

(
−1

2

)
,A~u0 =

(
1 2
2 1

)(
−1

2

)
=

(
3
0

)
and

aug(~c1,~c2) =

(
−1 3

2 0

)((
1 1
−1 3

)T)−1

=

(
−3/2 1/2

3/2 1/2

)
.

The solution of the initial value problem is

~u(t) = e−t
(
−3/2

3/2

)
+ e3t

(
1/2
1/2

)
=

(
−3

2e
−t + 1

2e
3t

3
2e
−t + 1

2e
3t

)
.



Other Representations of the Solution u

Let y1(t), . . . , yn(t) be a solution basis for the nth order linear homogeneous constant-
coefficient differential equation whose characteristic equation is det(A− rI) = 0.

Consider the solution basis atom1, atom2, . . . , atomn. Each atom is a linear combina-
tion of y1, . . . , yn. Replacing the atoms in the formula

u(t) = (atom1)c1 + · · ·+ (atomn)cn

by these linear combinations implies there are constant vectors d1, . . . , dn such that

u(t) = y1(t)~d1 + · · ·+ yn(t)~dn



Another General Solution of u′ = Au

Theorem 3 (General Solution)
The unique solution of u′ = Au, u(0) = u0 is

u(t) = φ1(t)u0 + φ2(t)Au0 + · · ·+ φn(t)A
n−1u0

where φ1, . . . , φn are linear combinations of atoms constructed from roots of the
characteristic equation det(A− rI) = 0, such that

Wronskian(φ1(t), . . . , φn(t))|t=0 = I.



Proof of the theorem

Proof: Details will be given for n = 3. The details for arbitrary matrix dimension n is an easy modification
of this proof. The Wronskian condition implies φ1, φ2, φ3 are independent. Then each atom constructed from
the characteristic equation is a linear combination of φ1, φ2, φ3. It follows that the unique solution u can be
written for some vectors d1, d2, d3 as

u(t) = φ1(t)~d1 + φ2(t)~d2 + φ3(t)~d3.

Differentiate this equation twice and then set t = 0 in all 3 equations. The relations u′ = Au and u′′ = Au′ =
AAu imply the 3 equations

u0 = φ1(0)d1 + φ2(0)d2 + φ3(0)d3

Au0 = φ′
1(0)d1 + φ′

2(0)d2 + φ′
3(0)d3

A2u0 = φ′′
1 (0)d1 + φ′′

2 (0)d2 + φ′′
3 (0)d3

Because the Wronskian is the identity matrix I, then these equations reduce to

u0 = 1d1 + 0d2 + 0d3

Au0 = 0d1 + 1d2 + 0d3

A2u0 = 0d1 + 0d2 + 1d3

which implies d1 = u0, d2 = Au0, d3 = A2u0.
The claimed formula for u(t) is established and the proof is complete.



Change of Basis Equation

Illustrated here is the change of basis formula for n = 3. The formula for general n is
similar.
Letφ1(t),φ2(t),φ3(t) denote the linear combinations of atoms obtained from the vector
formula (

φ1(t), φ2(t), φ3(t)
)

=
(

atom1(t), atom2(t), atom3(t)
)
C−1

where
C = Wronskian(atom1, atom2, atom3)(0).

The solutions φ1(t), φ2(t), φ3(t) are called the principal solutions of the linear ho-
mogeneous constant-coefficient differential equation constructed from the characteristic
equation det(A− rI) = 0. They satisfy the initial conditions

Wronskian(φ1, φ2, φ3)(0) = I.


