Systems of Differential Equations Matrix Methods

- Characteristic Equation
- Cayley-Hamilton
 - Cayley-Hamilton Theorem
 - An Example
 - The Cayley-Hamilton Method for $\mathbf{u}' = A\mathbf{u}$
 - A Working Rule for Solving $\mathbf{u}' = A\mathbf{u}$
- Solving 2×2 $\mathbf{u}' = A\mathbf{u}$
 - Finding \vec{c}_1 and \vec{c}_2
 - A Matrix Method for Finding \vec{c}_1 and \vec{c}_2
- Other Representations of the Solution **u**
 - Another General Solution of $\mathbf{u}' = A\mathbf{u}$
 - Change of Basis Equation

Characteristic Equation

Definition 1 (Characteristic Equation)

Given a square matrix A, the characteristic equation of A is the polynomial equation

$$\det(A - rI) = 0.$$

The determinant $\det(A - rI)$ is formed by subtracting r from the diagonal of A. The polynomial $p(r) = \det(A - rI)$ is called the **characteristic polynomial**.

- If A is 2 imes 2, then p(r) is a quadratic.
- If A is 3 imes 3, then p(r) is a cubic.
- The determinant is expanded by the cofactor rule, in order to preserve factorizations.

Characteristic Equation Examples

Create det(A - rI) by subtracting r from the diagonal of A. Evaluate by the cofactor rule.

$$A = \begin{pmatrix} 2 & 3 \\ 0 & 4 \end{pmatrix}, \quad p(r) = \begin{vmatrix} 2 - r & 3 \\ 0 & 4 - r \end{vmatrix} = (2 - r)(4 - r)$$
$$A = \begin{pmatrix} 2 & 3 & 4 \\ 0 & 5 & 6 \\ 0 & 0 & 7 \end{pmatrix}, \quad p(r) = \begin{vmatrix} 2 - r & 3 & 4 \\ 0 & 5 - r & 6 \\ 0 & 0 & 7 - r \end{vmatrix} = (2 - r)(5 - r)(7 - r)$$

Cayley-Hamilton

Theorem 1 (Cayley-Hamilton)

A square matrix A satisfies its own characteristic equation.

If $p(r)=(-r)^n+a_{n-1}(-r)^{n-1}+\cdots a_0,$ then the result is the equation $(-A)^n+a_{n-1}A^{n-1}+\cdots +a_1A+a_0I=0,$

where I is the $n \times n$ identity matrix and 0 is the $n \times n$ zero matrix.

Cayley-Hamilton Example

Assume

$$A=\left(egin{array}{cccc} 2 & 3 & 4 \ 0 & 5 & 6 \ 0 & 0 & 7 \end{array}
ight)$$

Then

$$p(r) = egin{bmatrix} 2-r & 3 & 4 \ 0 & 5-r & 6 \ 0 & 0 & 7-r \end{bmatrix} = (2-r)(5-r)(7-r)$$

and the Cayley-Hamilton Theorem says that

$$(2I-A)(5I-A)(7I-A) = \left(egin{array}{cc} 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \ \end{array}
ight).$$

Cayley-Hamilton Method

Theorem 2 (Cayley-Hamilton Method for u' = Au)

A component function $u_k(t)$ of the vector solution u(t) for u'(t) = Au(t) is a solution of the *n*th order linear homogeneous constant-coefficient differential equation whose characteristic equation is det(A - rI) = 0.

Let $\operatorname{atom}_1, \ldots, \operatorname{atom}_n$ denote the atoms constructed from the characteristic equation $\det(A - rI) = 0$ by Euler's Theorem. Then constant vectors c_1, \ldots, c_n exist, uniquely determined by A and u(0), such that

$$\mathbf{u}(t) = (\operatorname{atom}_1)\vec{\mathbf{c}}_1 + \cdots + (\operatorname{atom}_n)\vec{\mathbf{c}}_n$$

A Working Rule for Solving $\mathbf{u}' = A\mathbf{u}_-$

The Theorem says that $\mathbf{u}' = A\mathbf{u}$ can be solved from the formula

$$\mathbf{u}(t) = (\mathrm{atom}_1)ec{\mathbf{c}}_1 + \dots + (\mathrm{atom}_n)ec{\mathbf{c}}_n$$

- The problem of solving $\mathbf{u}' = A\mathbf{u}$ is reduced to finding the vectors $\vec{\mathbf{c}}_1, \ldots, \vec{\mathbf{c}}_n$.
- The vectors $\vec{c}_1, \ldots, \vec{c}_n$ are **not arbitrary**, but instead **uniquely determined** by A and u(0)!

A 2 \times 2 Illustration

Let us solve $\vec{u}' = A\vec{u}$ when A is the non-triangular matrix

$$A=\left(egin{array}{cc} 1 & 2 \ 2 & 1 \end{array}
ight).$$

The characteristic polynomial is

$$\left| \begin{array}{ccc} 1-r & 2 \\ 2 & 1-r \end{array} \right| = (1-r)^2 - 4 = (r+1)(r-3).$$

Euler's theorem implies solution atoms e^{-t} , e^{3t} .

Then \vec{u} is a vector linear combination of the solution atoms,

$$\vec{\mathrm{u}}=e^{-t}\vec{\mathrm{c}}_1+e^{3t}\vec{\mathrm{c}}_2.$$

Finding \vec{c}_1 and \vec{c}_2 _

To solve for c_1 and c_2 , differentiate the above relation. Replace \vec{u}' by $A\vec{u}$, then set t = 0 and $\vec{u}(0) = \vec{u}_0$ in the two formulas to obtain the relations

$$egin{array}{rcl} ec{\mathrm{u}}_0 &=& e^0ec{\mathrm{c}}_1 \;+\; e^0ec{\mathrm{c}}_2 \ Aec{\mathrm{u}}_0 &=& -e^0ec{\mathrm{c}}_1 \;+\; 3e^0ec{\mathrm{c}}_2 \end{array}$$

Adding the equations gives $ec{\mathbf{u}}_0 + A ec{\mathbf{u}}_0 = 4 ec{\mathbf{c}}_2$ and then

$$ec{\mathbf{c}}_1 = rac{3}{4} \mathbf{u}_0 - rac{1}{4} A \mathbf{u}_0, \quad ec{\mathbf{c}}_2 = rac{1}{4} \mathbf{u}_0 + rac{1}{4} A \mathbf{u}_0.$$

A Matrix Method for Finding \vec{c}_1 and \vec{c}_2

The Cayley-Hamilton Method produces a unique solution for c_1 , c_2 because the coefficient matrix

$$\left(egin{array}{cc} e^0 & e^0 \ -e^0 & 3e^0 \end{array}
ight)$$

is exactly the Wronskian W of the basis of atoms evaluated at t = 0. This same fact applies no matter the number of coefficients $\vec{c}_1, \vec{c}_2, \ldots$ to be determined.

The answer for \vec{c}_1 and \vec{c}_2 can be written in matrix form in terms of the transpose W^T of the Wronskian matrix as

$$\operatorname{aug}(ec{ ext{c}}_1,ec{ ext{c}}_2) = \operatorname{aug}(ec{ ext{u}}_0,Aec{ ext{u}}_0)(W^T)^{-1}.$$

Solving a 2 imes 2 Initial Value Problem

$$\vec{\mathrm{u}}' = A\vec{\mathrm{u}}, \quad \vec{\mathrm{u}}(0) = \begin{pmatrix} -1\\2 \end{pmatrix}, \quad A = \begin{pmatrix} 1 & 2\\2 & 1 \end{pmatrix}.$$
Then $\vec{\mathrm{u}}_0 = \begin{pmatrix} -1\\2 \end{pmatrix}, A\vec{\mathrm{u}}_0 = \begin{pmatrix} 1 & 2\\2 & 1 \end{pmatrix} \begin{pmatrix} -1\\2 \end{pmatrix} = \begin{pmatrix} 3\\0 \end{pmatrix}$ and
$$\operatorname{aug}(\vec{\mathrm{c}}_1, \vec{\mathrm{c}}_2) = \begin{pmatrix} -1 & 3\\2 & 0 \end{pmatrix} \left(\begin{pmatrix} 1 & 1\\-1 & 3 \end{pmatrix}^T \right)^{-1} = \begin{pmatrix} -3/2 & 1/2\\3/2 & 1/2 \end{pmatrix}.$$

The solution of the initial value problem is

$$ec{\mathrm{u}}(t) = e^{-t} \left(egin{array}{c} -3/2 \ 3/2 \end{array}
ight) + e^{3t} \left(egin{array}{c} 1/2 \ 1/2 \end{array}
ight) = \left(egin{array}{c} -rac{3}{2}e^{-t} + rac{1}{2}e^{3t} \ rac{3}{2}e^{-t} + rac{1}{2}e^{3t} \end{array}
ight).$$

Other Representations of the Solution u

Let $y_1(t), \ldots, y_n(t)$ be a solution basis for the *n*th order linear homogeneous constantcoefficient differential equation whose characteristic equation is det(A - rI) = 0.

Consider the solution basis atom_1 , atom_2 , ..., atom_n . Each atom is a linear combination of y_1, \ldots, y_n . Replacing the atoms in the formula

$$\mathbf{u}(t) = (\mathrm{atom}_1)\mathbf{c}_1 + \cdots + (\mathrm{atom}_n)\mathbf{c}_n$$

by these linear combinations implies there are constant vectors d_1, \ldots, d_n such that

$$\mathrm{u}(t)=y_1(t)ec{\mathrm{d}}_1+\dots+y_n(t)ec{\mathrm{d}}_n$$

Another General Solution of $\mathbf{u}' = A\mathbf{u}_-$

Theorem 3 (General Solution) The unique solution of $\mathbf{u}' = A\mathbf{u}, \mathbf{u}(0) = \mathbf{u}_0$ is

$$\mathbf{u}(t)=\phi_1(t)\mathbf{u}_0+\phi_2(t)A\mathbf{u}_0+\dots+\phi_n(t)A^{n-1}\mathbf{u}_0$$

where ϕ_1, \ldots, ϕ_n are linear combinations of atoms constructed from roots of the characteristic equation $\det(A - rI) = 0$, such that

Wronskian
$$(\phi_1(t),\ldots,\phi_n(t))|_{t=0}=I.$$

Proof of the theorem

Proof: Details will be given for n = 3. The details for arbitrary matrix dimension n is an easy modification of this proof. The Wronskian condition implies ϕ_1 , ϕ_2 , ϕ_3 are independent. Then each atom constructed from the characteristic equation is a linear combination of ϕ_1 , ϕ_2 , ϕ_3 . It follows that the unique solution u can be written for some vectors d_1 , d_2 , d_3 as

$$u(t) = \phi_1(t) \vec{d}_1 + \phi_2(t) \vec{d}_2 + \phi_3(t) \vec{d}_3.$$

Differentiate this equation twice and then set t = 0 in all 3 equations. The relations u' = Au and u'' = Au' = AAu imply the 3 equations

$$\begin{array}{rclrr} \mathbf{u}_0 &=& \phi_1(0)\mathbf{d}_1 &+& \phi_2(0)\mathbf{d}_2 &+& \phi_3(0)\mathbf{d}_3 \\ A\mathbf{u}_0 &=& \phi_1'(0)\mathbf{d}_1 &+& \phi_2'(0)\mathbf{d}_2 &+& \phi_3'(0)\mathbf{d}_3 \\ A^2\mathbf{u}_0 &=& \phi_1''(0)\mathbf{d}_1 &+& \phi_2''(0)\mathbf{d}_2 &+& \phi_3''(0)\mathbf{d}_3 \end{array}$$

Because the Wronskian is the identity matrix I, then these equations reduce to

$\mathbf{u_0}$	=	$1d_1$	+	$0d_2$	+	$0d_3$
$A \mathrm{u}_0$	=	$0d_1$	+	$1d_2$	+	$0d_3$
A^2 u ₀	=	$0d_1$	+	$0d_2$	+	$1d_3$

which implies $d_1 = u_0$, $d_2 = Au_0$, $d_3 = A^2u_0$. The claimed formula for u(t) is established and the proof is complete.

Change of Basis Equation

Illustrated here is the change of basis formula for n = 3. The formula for general n is similar.

Let $\phi_1(t)$, $\phi_2(t)$, $\phi_3(t)$ denote the linear combinations of atoms obtained from the vector formula

$$ig(\phi_1(t),\phi_2(t),\phi_3(t)ig)=ig(\operatorname{atom}_1(t),\operatorname{atom}_2(t),\operatorname{atom}_3(t)ig)\,C^{-1}$$

where

$C = Wronskian(atom_1, atom_2, atom_3)(0).$

The solutions $\phi_1(t)$, $\phi_2(t)$, $\phi_3(t)$ are called the **principal solutions** of the linear homogeneous constant-coefficient differential equation constructed from the characteristic equation $\det(A - rI) = 0$. They satisfy the initial conditions

Wronskian $(\phi_1, \phi_2, \phi_3)(0) = I$.