Orthogonality

- Orthogonal Vectors
- Unitization
- Orthogonal and Orthonormal Set
- Independence and Orthogonality
- Inner Product Spaces
- Fundamental Inequalities
- Pythagorean Relation

Orthogonality _

Definition 1 (Orthogonal Vectors)

Two vectors **u**, **v** are said to be **orthogonal** provided their dot product is zero:

$$\mathbf{u} \cdot \mathbf{v} = 0$$
.

If both vectors are nonzero (not required in the definition), then the angle θ between the two vectors is determined by

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} = 0,$$

which implies $\theta=90^\circ$. In short, orthogonal vectors form a right angle.

Unitization

Any nonzero vector \mathbf{u} can be multiplied by $\mathbf{c} = \frac{1}{\|\mathbf{u}\|}$ to make a **unit vector** $\mathbf{v} = c\mathbf{u}$, that is, a vector satisfying $\|\mathbf{v}\| = 1$.

This process of changing the length of a vector to 1 by scalar multiplication is called **unitization**.

Orthogonal and Orthonormal Set

Definition 2 (Orthogonal Set of Vectors)

A given set of nonzero vectors $\mathbf{u}_1, \ldots, \mathbf{u}_k$ that satisfies the **orthogonality condition**

$$\mathbf{u}_i \cdot \mathbf{u}_j = 0, \quad i \neq j,$$

is called an orthogonal set.

Definition 3 (Orthonormal Set of Vectors)

A given set of unit vectors $\mathbf{u}_1, \ldots, \mathbf{u}_k$ that satisfies the **orthogonality condition** is called an **orthonormal set**.

Independence and Orthogonality

Theorem 1 (Independence)

An orthogonal set of nonzero vectors is linearly independent.

Proof: Let c_1, \ldots, c_k be constants such that nonzero orthogonal vectors $\mathbf{u}_1, \ldots, \mathbf{u}_k$ satisfy the relation

$$c_1\mathbf{u}_1+\cdots+c_k\mathbf{u}_k=0.$$

Take the dot product of this equation with vector \mathbf{u}_i to obtain the scalar relation

$$c_1\mathbf{u}_1\cdot\mathbf{u}_j+\cdots+c_k\mathbf{u}_k\cdot\mathbf{u}_j=0.$$

Because all terms on the left are zero, except one, the relation reduces to the simpler equation

$$c_j \|\mathbf{u}_j\|^2 = 0.$$

This equation implies $c_i = 0$. Therefore, $c_1 = \cdots = c_k = 0$ and the vectors are proved independent.

Inner Product Spaces

An **inner product** on a vector space V is a function that maps a pair of vectors \mathbf{u} , \mathbf{v} into a scalar $\langle \mathbf{u}, \mathbf{v} \rangle$ satisfying the following four properties.

- 1. $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$ [symmetry]
- 2. $\langle \mathbf{u}, \mathbf{v} + \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{w} \rangle$ [additivity]
- 3. $\langle c\mathbf{u}, \mathbf{v} \rangle = c \langle \mathbf{u}, \mathbf{v} \rangle$ [homogeneity]
- 4. $\langle \mathbf{u}, \mathbf{u} \rangle \geq 0$, $\langle \mathbf{u}, \mathbf{u} \rangle = 0$ if and only if $\mathbf{u} = 0$ [positivity]

The **length** of a vector is then defined to be $\|\mathbf{u}\| = \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle}$.

A vector space V with inner product defined is called an **inner product space**.

Fundamental Inequalities

Theorem 2 (Cauchy-Schwartz Inequality)

In any inner product space V,

$$|\langle \mathbf{u}, \mathbf{v} \rangle| \le ||\mathbf{u}|| ||\mathbf{v}||.$$

Equality holds if and only if \mathbf{u} and \mathbf{v} are linearly dependent.

Theorem 3 (Triangle Inequality)

In any inner product space V,

$$||u + v|| \le ||u|| + ||v||.$$

Pythagorean Relation

Theorem 4 (Pythagorean Identity)

In any inner product space V,

$$\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$$

if and only if ${\bf u}$ and ${\bf v}$ are orthogonal.

