
98 First Order Di�erential Equations2.5 Linear ApplicationsThis collection of applications for the linear equation y0 + p(x)y = r(x)includes mixing problems, especially brine tanks in single and multiplecascade, heating and cooling problems based upon Newton's law of cool-ing, radioactive isotope chains, and elementary electric circuits.Developed here is the theory for mixing cascades, heating and cooling.Radioactive decay theory was developed on page 3. Electric circuits oftype LR or RC were developed on page 16.Brine MixingInlet Outlet Figure 1. A brine tank.The tank has one inlet and one outlet. The inletsupplies a brine mixture and the outlet drains thetank.A given tank contains brine, that is, water and salt. Input pipes supplyother, possibly di�erent brine mixtures at varying rates, while outputpipes drain the tank. The problem is to determine the salt x(t) in thetank at any time.The basic chemical law to be applied is the mixture lawdxdt = input rate� output rate:The law is applied under a simplifying assumption: the concentrationof salt in the brine is uniform throughout the uid. Stirring is one wayto meet this requirement. Because of the uniformity assumption, theamount x(t) of salt in kilograms divided by the volume V (t) of the tankin liters gives salt concentration2 x(t)=V (t) kilograms per liter.One Input and One Output. Let the input be a(t) liters perminute with concentration C1 kilograms of salt per liter. Let the outputempty b(t) liters per minute. The tank is assumed to contain V0 liters ofbrine at t = 0. The tank gains uid at rate a(t) and loses uid at rateb(t), therefore V (t) = V0+ R t0 [a(r)� b(r)]dr is the volume of brine in thetank at time t. The mixture law applies to obtain (derived on page 107)the model linear di�erential equationdxdt = C1a(t)� b(t)x(t)V (t) :(1)2Concentration is de�ned as amount per unit volume.



2.5 Linear Applications 99Two-Tank Mixing. Two tanks A and B are assumed to contain A0and B0 liters of brine at t = 0. Let the input for the �rst tank A be a(t)liters per minute with concentration C1 kilograms of salt per liter. Lettank A empty at b(t) liters per minute into a second tank B, which itselfempties at c(t) liters per minute.Let x(t) be the number of kilograms of salt in tank A at time t. Similarly,y(t) is the amount of salt in tank B. The objective is to �nd di�erentialequations for the unknowns x(t), y(t).Fluid loses and gains in each tank give rise to the brine volume formulasVA(t) = A0 + R t0 [a(r) � b(r)]dr and VB(t) = B0 + R t0 [b(r) � c(r)]dr,respectively, for tanks A and B, at time t.The mixture law applies to obtain the model linear di�erential equationsdxdt = C1a(t)� b(t)x(t)VA(t) ;dydt = b(t)x(t)VA(t) � c(t)y(t)VB(t) :The �rst equation was solved in the previous paragraph, hence thereis an explicit formula for x(t). Substitute this formula into the secondequation, then solve for y(t) (by the same method).Residential Heating and CoolingThe internal temperature u(t) in a residence uctuates with the outdoortemperature, indoor heating and indoor cooling. Newton's law of coolingcan be written in this case asdudt = k(a(t)� u(t)) + s(t) + f(t);(2)where the various symbols have the interpretation below.k The insulation constant: k � 1=4 for good insula-tion and k � 1=2 for no insulation.a(t) The ambient outside temperature.s(t) Combined rate for all inside heat sources. Includesliving beings, appliances and whatever uses energy.f(t) Inside heating or cooling rate.A derivation of (2) appears on page 107. To solve equation (2), write itin standard linear form and use the integrating factor method on page84.



100 First Order Di�erential EquationsNo Sources. Assume the absence of heating inside the building, thatis, s(t) = f(t) = 0. Let the outside temperature be constant: a(t) = a0.Equation (2) simpli�es to the Newton cooling equation on page 4:dudt + ku(t) = ka0:(3)From Theorem 1, page 4, the solution isu(t) = a0 + (u(0) � a0)e�kt:(4)This formula represents exponential decay of the interior temperaturefrom u(0) to a0.Half-Time Insulation Constant. Suppose it's 50�F outside and70�F initially inside, when the electricity goes o�. How long does it taketo drop to 60�F inside? The answer is about 1{3 hours, depending onthe insulation.The importance of 60�F is that it is halfway between the inside andoutside temperatures of 70�F and 50�F. The range 1{3 hours is foundfrom (4) by solving u(T ) = 60 for T , in the extreme cases of poor orexcellent insulation.The more general equation u(T ) = (a0 +u(0))=2 can be solved. The an-swer is T = ln(2)=k, called the half-time insulation constant for theresidence. It measures the insulation quality, larger T corresponding tobetter insulation. For most residences, the half-time insulation constantranges from 1:4 to 2:8 hours.Winter Heating. The introduction of a furnace and a thermostatset at temperature T0 (typically, 68�F to 72�F) changes the source termf(t) to the special form f(t) = k1(T0 � u(t));according to Newton's law of cooling, where k1 is a constant. The dif-ferential equation (2) becomesdudt = k(a(t)� u(t)) + s(t) + k1(T0 � u(t)):(5)It is a �rst-order linear di�erential equation which can be solved by theintegrating factor method.Summer Air Conditioning. An air conditioner used with a ther-mostat leads to the same di�erential equation (5) and solution, becauseNewton's law of cooling applies to both heating and cooling.



2.5 Linear Applications 101Evaporative Cooling. In desert-mountain areas, where summer hu-midity is low, the evaporative cooler is a popular low-cost solution tocooling. The cooling e�ect is due to heat loss from the supply of outsideair, caused by energy conversion during water evaporation. Cool air ispumped into the residence much like a furnace pumps warm air. Anevaporative cooler may have no thermostat. The temperature P (t) ofthe pumped air depends on the outside air temperature and humidity.A Newton's cooling model for the inside temperature u(t) requires aconstant k1 for the evaporative cooling term f(t) = k1(P (t) � u(t)). Ifs(t) = 0 is assumed, then equation (2) becomesdudt = k(a(t)� u(t)) + k1(P (t)� u(t)):(6)This is a �rst-order linear di�erential equation, solvable by the integrat-ing factor method.During hot summer days the relation P (t) = 0:85a(t) could be valid, thatis, the air pumped from the cooler vent is 85% of the ambient outsidetemperature a(t). Extreme temperature variations can occur in the falland spring. In July, the reverse is possible, e.g., 100 < a(t) < 115.Assuming P (t) = 0:85a(t), the solution of (6) isu(t) = u(0)e�kt�k1t + (k + 0:85k1) Z t0 a(r)e(k+k1)(r�t)dr:Figure 2 shows the solution for a 24-hour period, using a sample pro�lea(t), k = 1=4, k1 = 2 and u(0) = 69. The residence temperature u(t) isexpected to be approximately between P (t) and a(t).u2405599 Pa a(t) = 8>>>>>>><>>>>>>>:
75� 2 t 0 � t � 639 + 4 t 6 < t � 930 + 5 t 9 < t � 1254 + 3 t 12 < t � 15129� 2 t 15 < t � 21170� 4 t 21 < t � 23147� 3 t 23 < t � 24Figure 2. A 24-hour plot of P , u and temperature pro�le a(t).Examples18 Example (Pollution) When industrial pollution in Lake Erie ceased, thelevel was �ve times that of its inow from Lake Huron. Assume Lake Eriehas perfect mixing, constant volume V and equal inow/outow rates of0:73V per year. Estimate the time required to reduce the pollution in half.Solution: The answer is about 1:34 years. An overview of the solution will begiven, followed by technical details.



102 First Order Di�erential EquationsOverview. The brine-mixing model applies to pollution problems, giving adi�erential equation model for the pollution concentration x(t),x0(t) = 0:73V c� 0:73x(t); x(0) = 5cV;where c is the inow pollution concentration. The model has solutionx(t) = x(0) �0:2 + 0:8e�0:73t� :Solving for the time T at which x(T ) = 12x(0) gives T = ln(8=3)=0:73 = 1:34years.Model details. The rate of change of x(t) equals the concentration rate inminus the concentration rate out. The in-rate equals c times the inow rate, orc(0:73V ). The out-rate equals x(t) times the outow rate, or 0:73VV x(t). Thisjusti�es the di�erential equation. The statement x(0)=\�ve times that of LakeHuron" means that x(0) equals 5c times the volume of Lake Erie, or 5cV .Solution details. Re-write the di�erential equation as x0(t) + 0:73x(t) =0:73x(0)=5. It has equilibrium solution xp = x(0)=5. The homogeneous solutionis xh = ke�0:73t, from the theory of growth-decay equations. Adding xh and xpgives the general solution x. To solve the initial value problem, substitute t = 0and �nd k = 4x(0)=5. Substitute for k into x = x(0)=5+ ke�0:73t to obtain thereported solution.Equation for T details. The equation x(T ) = 12x(0) becomes x(0)(0:2 +0:8e�0:73T ) = x(0)=2, which by algebra reduces to the exponential equatione�0:73T = 3=8. Take logarithms to isolate T = � ln(3=8)=0:73 � 1:3436017.19 Example (Brine Cascade) Assume brine tanks A and B in Figure 3 havevolumes 100 and 200 gallons, respectively. Let A(t) and B(t) denote thenumber of pounds of salt at time t, respectively, in tanks A and B. Purewater ows into tank A, brine ows out of tank A and into tank B, then brineows out of tank B. All ows are at 4 gallons per minute. Given A(0) = 40and B(0) = 40, �nd A(t) and B(t).waterA B Figure 3. Cascade of two brine tanks.Solution: The solutions for the brine cascade are (details below)A(t) = 40e�t=25; B(t) = 120e�t=50 � 80e�t=25:Modeling. This is an instance of the two-tank mixing problem on page 99.The volumes in the tanks do not change and the input salt concentration isC1 = 0. The equations aredAdt = �4A(t)100 ; dBdt = 4A(t)100 � 4B(t)200 :Solution A(t) details.



2.5 Linear Applications 103A0 = �0:04A, A(0) = 40 Initial value problem to be solved.A = 40e�t=25 Solution found by the growth-decayrecipe.Solution B(t) details.B0 = 0:04A� 0:02B, B(0) = 40 Initial value problem to be solved.B0 + 0:02B = 1:6e�t=25 Substitute for A. Get standard form.B0 + 0:02B = 0, B(0) = 40 Homogeneous problem to be solved.Bh = 40e�t=50 Homogeneous solution. Growth-decayrecipe applied.Bp = e�t=50 R t0 1:6e�r=25er=50dr Variation of parameters solution.= 80e�t=50 � 80e�t=25 Evaluate integral.B = Bh +Bp Superposition.= 120e�t=50 � 80e�t=25 Final solution.The solution can be checked in maple as follows.de1:=diff(x(t),t)=-4*x(t)/100:de2:=diff(y(t),t)=4*x(t)/100-4*y(t)/200:ic:=x(0)=40,y(0)=40:dsolve({de1,de2,ic},{x(t),y(t)});20 Example (O�ce Heating) A worker shuts o� the o�ce heat and goeshome at 5PM. It's 72�F inside and 60�F outside overnight. Estimate theo�ce temperature at 8PM, 11PM and 6AM.Solution:The temperature estimates are 62:7-65:7�F, 60:6-62:7�F and 60:02-60:5�F. De-tails follow.Model. The residential heating model applies, with no sources, to give u(t) =a0 + (u(0)� a0)e�kt. Supplied are values a0 = 60 and u(0) = 72. Unknown isconstant k in the formula u(t) = 60 + 12e�kt:Estimation of k. To make the estimate for k, assume the range 1=4 � k � 1=2,which covers the possibilities of poor to excellent insulation.Calculations. The estimates requested are for t = 3, t = 6 and t = 13. Theformula u(t) = 60 + 12e�kt and the range 0:25 � k � 0:5 gives the estimates62:68 � 60 + 12e�3k � 65:67,60:60 � 60 + 12e�6k � 62:68,60:02 � 60 + 12e�13k � 60:47.



104 First Order Di�erential Equations21 Example (Spring Temperatures) It's spring. The outside temperaturesare between 45�F and 75�F and the residence has no heating or cooling.Find an approximation for the interior temperature uctuation u(t) usingthe estimate a(t) = 60� 15 cos(�(t� 4)=12), k = ln(2)=2 and u(0) = 53.Solution: The approximation, justi�ed below, isu(t) � �8:5e�kt + 60 + 1:5 cos �t12 � 12 sin �t12 :Model. The residential model for no sources applies. Thenu0(t) = k(a(t)� u(t)):Computation of u(t). Let ! = �=12 and k = ln(2)=2. The solution isu = u(0)e�kt + R t0 ka(r)ek(r�t)dr Variation of parameters.= 53e�kt + R t0 15k(4� cos!(t� 4))ek(r�t)dr Insert a(t) and u(0).� �8:5e�kt + 60 + 1:5 cos!t� 12 sin!t Used maple integration.The maple code used for the integration appears below.k:=ln(2)/2: u0:=53:F:=r->k*(60-15*cos(Pi *(r-4)/12)):A:=t->(u0+int(F(r)*exp(k*r),r=0..t))*exp(-k*t);simplify(A(t));22 Example (Temperature Variation) Justify that in the spring and fall, theinterior of a residence has temperature variation between 69% and 89% ofthe outside temperature variation.Solution: The justi�cation necessarily makes some assumptions, which are:a(t) = B �A cos!(t� 4) Assume A > 0, B > 0, ! = �=12 andextreme temperatures at 4AM and 4PM.s(t) = 0 No inside heat sources.f(t) = 0 No furnace or air conditioner.1=4 � k � 1=2 Vary from excellent to poor insulation.u(0) = B The average of the outside low and high.Model. The residential model for no sources applies. Thenu0(t) = k(a(t)� u(t)):Formula for u. Variation of parameters gives a compact formula:u = u(0)e�kt + R t0 ka(r)ek(r�t)dr See (5), page 85.= Be�kt + R t0 k(B �A cos!(t� 4))ek(r�t)dr Insert a(t) and u(0).= c0Ae�kt +B + c1A cos!t+ c2A sin!t Evaluate. Values below.



2.5 Linear Applications 105The values of the constants in the calculation of u arec0 = 72k2 � 6k�p3; c1 = 6k�p3� 72k2144k2 + �2 ; c2 = �6k� � 72k2p3144k2 + �2 :The trigonometric formula a cos �+ b sin � = r sin(�+�) where r2 = a2+ b2 andtan� = a=b can be applied to the formula for u to rewrite it asu = c0Ae�kt +B +Aqc21 + c22 sin(!t+ �):The outside low and high are B � A and B + A. The outside temperaturevariation is their di�erence 2A. The exponential term contributes less than onedegree after 12 hours. The inside low and high are therefore approximatelyB � rA and B + rA where r = pc21 + c22. The inside temperature variation istheir di�erence 2rA, which is r times the outside variation.It remains to show that 0:69 � r � 0:89. The equation for r has a simplerepresentation: r = 12kp144k2 + �2 :It has derivative dr=dk > 0. The extrema occur at the endpoints of the interval1=4 � k � 1=2, giving values 0:69 and 0:89, approximately. This justi�es theestimates of 69% and 89%.The maple code used for the integration appears below.omega:=Pi/12:F:=r->k*(B-A*cos(omega *(r-4))):G:=t->(B+int(F(r)*exp(k*r),r=0..t))*exp(-k*t);simplify(G(t));23 Example (Radioactive Chain) Let A, B and C be the amounts of threeradioactive isotopes. Assume A decays into B at rate a, then B decays intoC at rate b. Given a 6= b, A(0) = A0 and B(0) = 0, �nd formulas for Aand B.Solution: The isotope amounts are (details below)A(t) = A0e�at; B(t) = aA0 e�at � e�btb� a :Modeling. The reaction model will be shown to beA0 = �aA; A(0) = A0; B0 = aA� bB; B(0) = 0:The derivation uses the radioactive decay law on page 18. The model for A issimple decay A0 = �aA. Isotope B is created from A at a rate equal to thedisintegration rate of A, or aA. But B itself undergoes disintegration at ratebB. The rate of increase of B is not aA but the di�erence of aA and bB, whichaccounts for lost material. Therefore, B0 = aA� bB.Solution Details for A.



106 First Order Di�erential EquationsA0 = �aA, A(0) = A0 Initial value problem to solve.A = A0e�at Use the growth-decay recipe on page 3.Solution Details for B.B0 = aA� bB, B(0) = 0 Initial value problem to solve.B0 + bB = aA0e�at, B(0) = 0 Insert A = A0e�at. Standard form.B = e�bt R t0 aA0e�arebrdr Variation of parameters solution y�p , page91. It already satis�es B(0) = 0.= aA0 e�at � e�btb� a Evaluate the integral for b 6= a.24 Example (Electric Circuits) For the LR-circuit of Figure 4, show thatIss = E=R and Itr = I0e�Rt=L are the steady-state and transient currents.
RI(t)
L E Figure 4. An LR-circuit withconstant voltage E and zeroinitial current I(0) = 0.Solution:Model. The LR-circuit equation is derived from Kirchho�'s laws and the volt-age drop formulas on page 17. The only new element is the added electromotiveforce term E(t), which is set equal to the algebraic sum of the voltage drops,giving the model LI 0(t) +RI(t) = E(t); I(0) = I0:General solution. The details:I 0 + (R=L)I = E=L Standard linear form.Ip = E=R Set I=constant, solve for a particular solution Ip.I 0 + (R=L)I = 0 Homogeneous equation. Solve for I = Ih.Ih = I0e�Rt=L Growth-decay recipe, page 4.I = Ih + Ip Superposition.= I0e�Rt=L +E=R General solution found.Steady-state solution. The steady-state solution is found by striking outfrom the general solution all terms that approach zero at t = 1. Remainingafter strike-out is Iss = E=R.Transient solution. The term transient refers to the terms in the generalsolution which approaches zero at t =1. Therefore, Itr = I0e�Rt=L.25 Example (Time constant) Show that the current I(t) in the LR-circuitof Figure 4 is at least 95% of the steady-state current E=R after three timeconstants, i.e., after time t = 3L=R.



2.5 Linear Applications 107Solution: Physically, the time constant L=R for the circuit is found by anexperiment in which the circuit is initialized to I = 0 at t = 0, then the currentI is observed until it reaches 63% of its steady-state value.Time to 95% of Iss. The solution is I(t) = E(1 � e�Rt=L)=R. Solving theinequality 1� e�Rt=L � 0:95 gives0:95 � 1� e�Rt=L Inequality to be solved for t.e�Rt=L � 1=20 Move terms across the inequality.ln e�Rt=L � ln(1=20) Take the logarithm across the inequality.�Rt=L � ln 1� ln 20 Apply logarithm rules.t � L ln(20)=R Isolate t on one side.The value ln(20) = 2:9957323 leads to the rule: after three times the timeconstant has elapsed, the current has reached 95% of the steady-state current.Details and ProofsBrine-Mixing One-tank Proof: The brine-mixing equation x0(t) = C1a(t)�b(t)x(t)=V (t) is justi�ed for the one-tank model, by applying the mixture law\dx=dt = input rate� output rate" as follows.input rate = �a(t) litersminute��C1 kilogramsliter �= C1a(t)kilogramsminute ,output rate = �b(t) litersminute�� x(t)V (t) kilogramsliter �= b(t)x(t)V (t) kilogramsminute .Residential Heating and Cooling Proof: Newton's law of cooling will beapplied to justify the residential heating and cooling equationdudt = k(a(t)� u(t)) + s(t) + f(t):Let u(t) be the indoor temperature. The heat ux is due to three heat sourcerates:N(t) = k(a(t)� u(t)) The Newton cooling rate.s(t) Combined rate for all inside heat sources.f(t) Inside heating or cooling rate.The expected change in u is the sum of the rates N , s and f . In the limit, u0(t)is on the left and the sum N(t)+ s(t)+ f(t) is on the right. This completes theproof.



108 First Order Di�erential EquationsExercises 2.5Concentration. A lab assistant col-lects n liters of brine, boils it until onlysalt crystals remain, then uses a scaleto determine the crystal mass m kilo-grams.(a) Report the concentration units.(b) Find the brine concentration.1. n = 1, m = 0:22752. n = 1:75, m = 0:326653. n = 1:5, m = 0:01554. n = 1:25, m = 0:01045. n = 2, m = 0:16. n = 2:5, m = 0:2215One-Tank Mixing. Assume one inletand one outlet. Determine the amountx(t) of salt in the tank at time t. Usethe text notation for equation (1).7. The inlet adds 10 liters per minutewith concentration C1 = 0:023kilograms per liter. The tank con-tains 110 liters of distilled wa-ter. The outlet drains 10 liters perminute.8. The inlet adds 12 liters per minutewith concentration C1 = 0:0205kilograms per liter. The tank con-tains 200 liters of distilled wa-ter. The outlet drains 12 liters perminute.9. The inlet adds 10 liters per minutewith concentration C1 = 0:0375kilograms per liter. The tank con-tains 200 liters of brine in which 3kilograms of salt is dissolved. Theoutlet drains 10 liters per minute.10. The inlet adds 12 liters per minutewith concentration C1 = 0:0375kilograms per liter. The tank con-tains 500 liters of brine in which 7kilograms of salt is dissolved. Theoutlet drains 12 liters per minute.

11. The inlet adds 10 liters per minutewith concentration C1 = 0:1075kilograms per liter. The tank con-tains 1000 liters of brine in whichk kilograms of salt is dissolved.The outlet drains 10 liters perminute.12. The inlet adds 14 liters per minutewith concentration C1 = 0:1124kilograms per liter. The tank con-tains 2000 liters of brine in whichk kilograms of salt is dissolved.The outlet drains 14 liters perminute.13. The inlet adds 10 liters per minutewith concentration C1 = 0:104kilograms per liter. The tank con-tains 100 liters of brine in which0:25 kilograms of salt is dissolved.The outlet drains 11 liters perminute. Determine additionallythe time when the tank is empty.14. The inlet adds 16 liters per minutewith concentration C1 = 0:01114kilograms per liter. The tank con-tains 1000 liters of brine in which4 kilograms of salt is dissolved.The outlet drains 20 liters perminute. Determine additionallythe time when the tank is empty.15. The inlet adds 10 liters per minutewith concentration C1 = 0:1 kilo-grams per liter. The tank con-tains 500 liters of brine in which kkilograms of salt is dissolved. Theoutlet drains 12 liters per minute.Determine additionally the timewhen the tank is empty.16. The inlet adds 11 liters per minutewith concentration C1 = 0:0156kilograms per liter. The tank con-tains 700 liters of brine in which kkilograms of salt is dissolved. Theoutlet drains 12 liters per minute.Determine additionally the timewhen the tank is empty.



2.5 Linear Applications 109Two-Tank Mixing. Assume brinetanks A and B in Figure 3 have vol-umes 100 and 200 gallons, respectively.Let A(t) and B(t) denote the numberof pounds of salt at time t, respec-tively, in tanks A and B. Distilled wa-ter ows into tank A, then brine owsout of tank A and into tank B, thenout of tank B. All ows are at r gal-lons per minute. Given rate r and ini-tial salt amounts A(0) and B(0), �ndA(t) and B(t).17. r = 4, A(0) = 40, B(0) = 20.18. r = 3, A(0) = 10, B(0) = 15.19. r = 5, A(0) = 20, B(0) = 40.20. r = 5, A(0) = 40, B(0) = 30.21. r = 8, A(0) = 10, B(0) = 12.22. r = 8, A(0) = 30, B(0) = 12.23. r = 9, A(0) = 16, B(0) = 14.24. r = 9, A(0) = 22, B(0) = 10.25. r = 7, A(0) = 6, B(0) = 5.26. r = 7, A(0) = 13, B(0) = 26Residential Heating. Assume theNewton cooling model for heating andinsulation values 1=4 � k � 1=2. Fol-low Example 20, page 103.27. The o�ce heat goes o� at 7PM.It's 74�F inside and 58�F out-side overnight. Estimate the of-�ce temperature at 10PM, 1AMand 6AM.28. The o�ce heat goes o� at 6:30PM.It's 73�F inside and 55�F out-side overnight. Estimate the o�cetemperature at 9PM, 3AM and7AM.29. The radiator goes o� at 9PM.It's 74�F inside and 58�F out-side overnight. Estimate the roomtemperature at 11PM, 2AM and6AM.

30. The radiator goes o� at 10PM.It's 72�F inside and 55�F out-side overnight. Estimate the roomtemperature at 2AM, 5AM and7AM.31. The o�ce heat goes on in themorning at 6:30AM. It's 57�Finside and 40� to 55�F outsideuntil 11AM. Estimate the o�cetemperature at 8AM, 9AM and10AM. Assume the furnace pro-vides a �ve degree temperaturerise in 30 minutes and the ther-mostat is set for 76�F.32. The o�ce heat goes on at 6AM.It's 55�F inside and 43� to 53�Foutside until 10AM. Estimate theo�ce temperature at 7AM, 8AMand 9AM. Assume the furnaceprovides a seven degree temper-ature rise in 45 minutes and thethermostat is set for 78�F.33. The hot water heating goes onat 6AM. It's 55�F inside and 50�to 60�F outside until 10AM. Es-timate the room temperature at7:30AM. Assume the radiator pro-vides a four degree temperaturerise in 45 minutes and the ther-mostat is set for 74�F.34. The hot water heating goes on at5:30AM. It's 54�F inside and 48�to 58�F outside until 9AM. Es-timate the room temperature at7AM. Assume the radiator pro-vides a �ve degree temperaturerise in 45 minutes and the ther-mostat is set for 74�F.35. A portable heater goes on at7AM. It's 45�F inside and 40�to 46�F outside until 11AM. Es-timate the room temperature at9AM. Assume the heater providesa two degree temperature rise in30 minutes and the thermostat isset for 90�F.



110 First Order Di�erential Equations36. A portable heater goes on at8AM. It's 40�F inside and 40�to 45�F outside until 11AM. Es-timate the room temperature at10AM. Assume the heater pro-vides a two degree temperaturerise in 20 minutes and the ther-mostat is set for 90�F.Evaporative Cooling. De�ne outsidetemperature (see Figure 2)a(t) =8>>>>>>><>>>>>>>:
75� 2 t 0 � t � 639 + 4 t 6 < t � 930 + 5 t 9 < t � 1254 + 3 t 12 < t � 15129� 2 t 15 < t � 21170� 4 t 21 < t � 23147� 3 t 23 < t � 24.Given k, k1, P (t) = wa(t) and u(0) =69, then plot u(t), P (t) and a(t) on onegraphic.u(t) = u(0)e�kt�k1t+(k + wk1) R t0 a(r)e(k+k1)(r�t)dr:37. k = 1=4, k1 = 2, w = 0:8538. k = 1=4, k1 = 1:8, w = 0:8539. k = 3=8, k1 = 2, w = 0:8540. k = 3=8, k1 = 2:4, w = 0:8541. k = 1=4, k1 = 3, w = 0:8042. k = 1=4, k1 = 4, w = 0:8043. k = 1=2, k1 = 4, w = 0:8044. k = 1=2, k1 = 5, w = 0:8045. k = 3=8, k1 = 3, w = 0:8046. k = 3=8, k1 = 4, w = 0:80Radioactive Chain. Let A, B andC be the amounts of three radioactive

isotopes. Assume A decays into B atrate a, then B decays into C at rate b.Given a, b, A(0) = A0 and B(0) = B0,�nd formulas for A and B.47. a = 2, b = 3, A0 = 100, B0 = 1048. a = 2, b = 3, A0 = 100, B0 = 10049. a = 1, b = 4, A0 = 100, B0 = 20050. a = 1, b = 4, A0 = 300, B0 = 10051. a = 4, b = 3, A0 = 100, B0 = 10052. a = 4, b = 3, A0 = 100, B0 = 20053. a = 6, b = 1, A0 = 600, B0 = 10054. a = 6, b = 1, A0 = 500, B0 = 40055. a = 3, b = 1, A0 = 100, B0 = 20056. a = 3, b = 1, A0 = 400, B0 = 700Electric Circuits. In the LR-circuitof Figure 4, assume E(t) = A coswtand I(0) = 0. Solve for I(t).57. A = 100, w = 2�, R = 1, L = 258. A = 100, w = 4�, R = 1, L = 259. A = 100, w = 2�, R = 10, L = 160. A = 100, w = 2�, R = 10, L = 261. A = 5, w = 10, R = 2, L = 362. A = 5, w = 4, R = 3, L = 263. A = 15, w = 2, R = 1, L = 464. A = 20, w = 2, R = 1, L = 365. A = 25, w = 100, R = 5, L = 1566. A = 25, w = 50, R = 5, L = 5


