Second Order Systems

- Coupled Spring-Mass Systems
- Variables
- Derivation
- Vector-Matrix form $\mathbf{x}'' = A\mathbf{x}$

Coupled Spring-Mass Systems

Three masses are attached to each other by four springs as in Figure 1. A model will be developed for the positions of the three masses.

$$k_1$$
 k_2 k_3 k_4

 m_1 m_2 m_3

Figure 1. Three masses connected by springs. The masses slide along a frictionless horizontal surface.

Variables

The analysis uses the following constants, variables and assumptions.

Mass	The masses m_1 , m_2 , m_3 are assumed to be point masses con-
Constants	centrated at their center of gravity.
Spring Constants	The mass of each spring is negligible. The springs operate ac- cording to Hooke's law: Force = k(elongation). Constants k_1 , k_2 , k_3 , k_4 denote the Hooke's constants. The springs restore after compression and extension.
Position Variables	The symbols $x_1(t)$, $x_2(t)$, $x_3(t)$ denote the mass positions along the horizontal surface, measured from their equilibrium po- sitions, plus right and minus left.
Fixed Ends	The first and last spring are attached to fixed walls.

Derivation

The **competition method** is used to derive the equations of motion. In this case, the law is

Newton's Second Law Force = Sum of the Hooke's Forces.

The model equations are

(1)
$$m_1 x_1''(t) = -k_1 x_1(t) + k_2 [x_2(t) - x_1(t)],$$

 $m_2 x_2''(t) = -k_2 [x_2(t) - x_1(t)] + k_3 [x_3(t) - x_2(t)],$
 $m_3 x_3''(t) = -k_3 [x_3(t) - x_2(t)] - k_4 x_3(t).$

- The equations are justified in the case of all positive variables by observing that the first three springs are elongated by $x_1, x_2 x_1, x_3 x_2$, respectively. The last spring is compressed by x_3 , which accounts for the minus sign.
- Another way to justify the equations is through mirror-image symmetry: interchange $k_1 \leftrightarrow k_4, k_2 \leftrightarrow k_3, x_1 \leftrightarrow x_3$, then equation 2 should be unchanged and equation 3 should become equation 1.

Vector-Matrix form $\mathbf{x}'' = A\mathbf{x}$

In vector-matrix form, this system is a second order system

$$M\mathbf{x}''(t) = K\mathbf{x}(t)$$

where the **displacement** \mathbf{x} , mass matrix M and stiffness matrix K are defined by the formulas

$$\mathrm{x}\!=\!\begin{pmatrix} x_1\ x_2\ x_3 \end{pmatrix}, \,\, M\!=\!\begin{pmatrix} m_1 \,\, 0 \,\,\, 0\ 0 \,\, m_2 \,\, 0\ 0 \,\,\, m_3 \end{pmatrix}, \,\, K\!=\!\begin{pmatrix} -k_1-k_2 \,\,\, k_2 \,\,\,\, 0\ k_2 \,\,\, -k_2-k_3 \,\,\, k_3\ 0 \,\,\, k_3 \,\,\, -k_3-k_4 \end{pmatrix}$$

Because M is invertible, the system can always be re-written using $A = M^{-1}K$ as the second-order system

$$\mathbf{x}'' = A\mathbf{x}.$$