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Forced Undamped Motion
The equation for study is a forced spring–mass system

mx′′(t) + kx(t) = f(t).

The model originates by equating the Newton’s second law forcemx′′(t) to the sum of the
Hooke’s force −kx(t) and the external force f(t). The physical model is a laboratory
box containing an undamped spring–mass system, transported on a truck as in Figure 1,
with external force f(t) = F0 cosωt induced by the speed bumps.
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Figure 1. An undamped spring-mass system in a box is transported on a truck. Speed
bumps on the shoulder of the road induce periodic vertical oscillations to the box.



Undamped Spring-Mass System
The forced spring-mass equation without damping is

x′′(t) + ω2
0 x(t) =

F0

m
cosωt, ω0 =

√
k/m.

The general solution x(t) always presents itself in two pieces, as the sum of the homoge-
neous solution xh and a particular solution xp. For ω 6= ω0, the general solution is

x(t) = xh(t) + xp(t),
xh(t) = c1 cosω0t+ c2 sinω0t, c1, c2 constants,

xp(t) = A1 cosωt, A1 =
F0/m

ω2
0 − ω2

.
(1)

A general statement can be made about the solution decomposition:

The solution is a sum of two harmonic oscillations, one of natural fre-
quency ω0 due to the spring and the other of natural frequency ω due
to the external force F0 cosωt.



Rapidly and slowly varying functions
The superposition x(t) in (1) will exhibit the phenomenon of beats for certain choices of
ω0, ω, x(0) and x′(0). For example, consider x(t) = cosω0t − cosωt. Use the
trigonometric identity 2 sin a sin b = cos(a − b) − cos(a + b) to write x(t) =
A(t) sin 1

2(ω0 + ω)t whereA(t) = 2 sin 1
2(ω0 − ω)t. If ω ≈ ω0, thenA(t) has

natural frequency α = 1
2(ω0 − ω) near zero. The natural frequency β = 1

2(ω0 + ω)
can be relatively large and therefore x(t) is a product of a slowly varying amplitude
A(t) = 2 sinαt and a rapidly varying oscillation sinβt.
The physical phenomenon of beats refers to the periodic cancelation of sound at a slow
frequency. An illustration of the graphical meaning of beats appears in Figure 2.
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Figure 2. The phenomenon of beats. Shown is a rapidly–varying periodic oscillation
x(t) = 2 sin 4t sin 40t and the two slowly–varying envelope curves

x1(t) = 2 sin 4t, x2(t) = −2 sin 4t.



Rotating drum on a cart
Figure 3 shows a model for a rotating machine, like a front–loading clothes dryer. For
modeling purposes, the rotating drum with load is replaced by an idealized model: a mass
M on a string of radiusR rotating with angular speed ω. The center of rotation is located
along the center–line of the cart. The total mass m of the cart includes the rotating mass
M , which we imagine to be an off–center lump of wet laundry inside the dryer drum.
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Figure 3. A rotating vertical drum installed on a cart with skids.

Vibrations cause the cart to skid left or right. A spring of Hooke’s constant k restores the cart to its equilibrium
position x = 0. The cart has position x > 0 corresponding to skidding distance x to the right of the equilibrium
position, due to the off-center load. Similarly, x < 0 means the cart skidded distance |x| to the left.

The undamped oscillator model is

mx′′(t) + kx(t) = RMω2 cosωt.(2)



Model Derivation
Friction ignored, Newton’s second law gives force F = mx′′(t), where x locates the cart’s center of mass.
Hooke’s law gives force F = −kx(t). The centroid x can be expanded in terms of x(t) by using calculus
moment of inertia formulas. Let m1 = m −M be the cart mass, m2 = M the drum mass, x1 = x(t) the
moment arm for m1 and x2 = x(t) +R cos θ the moment arm for m2. Then θ = ωt in Figure 3 gives

x(t) =
m1x1 +m2x2

m1 +m2

=
(m−M)x(t) +M(x(t) +R cos θ)

m

= x(t) +
RM

m
cosωt.

(3)

Force competitionmx′′ = −kx and derivative expansion results in the forced harmonic
oscillator

mx′′(t) + kx(t) = RMω2 cosωt.




