Forced Undamped Oscillations

- Forced Undamped Motion
- Undamped Spring-Mass System
- Rapidly and slowly varying functions
- Rotating drum on a cart
- Model Derivation

Forced Undamped Motion

The equation for study is a forced spring-mass system

$$mx''(t) + kx(t) = f(t).$$

The model originates by equating the Newton's second law force mx''(t) to the sum of the Hooke's force -kx(t) and the external force f(t). The physical model is a laboratory box containing an undamped spring-mass system, transported on a truck as in Figure 1, with external force $f(t) = F_0 \cos \omega t$ induced by the speed bumps.

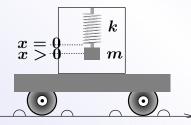


Figure 1. An undamped spring-mass system in a box is transported on a truck. Speed bumps on the shoulder of the road induce periodic vertical oscillations to the box.

Undamped Spring-Mass System

The forced spring-mass equation without damping is

$$x^{\prime\prime}(t)+\omega_0^2\,x(t)=rac{F_0}{m}\cos\omega t, \ \ \omega_0=\sqrt{k/m}.$$

The general solution x(t) always presents itself in two pieces, as the sum of the homogeneous solution x_h and a particular solution x_p . For $\omega \neq \omega_0$, the general solution is

(1)
$$egin{array}{lll} x(t) &= x_h(t) + x_p(t), \ x_h(t) &= c_1 \cos \omega_0 t + c_2 \sin \omega_0 t, \quad c_1, c_2 ext{ constants} \ x_p(t) &= A_1 \cos \omega t, \quad A_1 = rac{F_0/m}{\omega_0^2 - \omega^2}. \end{array}$$

A general statement can be made about the solution decomposition:

The solution is a sum of two harmonic oscillations, one of natural frequency ω_0 due to the spring and the other of natural frequency ω due to the external force $F_0 \cos \omega t$.

Rapidly and slowly varying functions

The superposition x(t) in (1) will exhibit the phenomenon of **beats** for certain choices of $\omega_0, \omega, x(0)$ and x'(0). For example, consider $x(t) = \cos \omega_0 t - \cos \omega t$. Use the trigonometric identity $2 \sin a \sin b = \cos(a - b) - \cos(a + b)$ to write $x(t) = A(t) \sin \frac{1}{2}(\omega_0 + \omega)t$ where $A(t) = 2 \sin \frac{1}{2}(\omega_0 - \omega)t$. If $\omega \approx \omega_0$, then A(t) has natural frequency $\alpha = \frac{1}{2}(\omega_0 - \omega)$ near zero. The natural frequency $\beta = \frac{1}{2}(\omega_0 + \omega)$ can be relatively large and therefore x(t) is a product of a slowly varying amplitude $A(t) = 2 \sin \alpha t$ and a rapidly varying oscillation $\sin \beta t$. The physical phenomenon of beats refers to the periodic cancelation of sound at a slow

frequency. An illustration of the graphical meaning of *beats* appears in Figure 2.

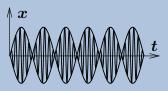


Figure 2. The phenomenon of beats. Shown is a rapidly-varying periodic oscillation $x(t) = 2 \sin 4t \sin 40t$ and the two slowly-varying envelope curves $x_1(t) = 2 \sin 4t, x_2(t) = -2 \sin 4t.$

Rotating drum on a cart

Figure 3 shows a model for a rotating machine, like a front-loading clothes dryer. For modeling purposes, the rotating drum with load is replaced by an idealized model: a mass M on a string of radius R rotating with angular speed ω . The center of rotation is located along the center-line of the cart. The total mass m of the cart includes the rotating mass M, which we imagine to be an off-center lump of wet laundry inside the dryer drum.

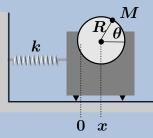


Figure 3. A rotating vertical drum installed on a cart with skids.

Vibrations cause the cart to skid left or right. A spring of Hooke's constant k restores the cart to its equilibrium position x = 0. The cart has position x > 0 corresponding to skidding distance x to the right of the equilibrium position, due to the off-center load. Similarly, x < 0 means the cart skidded distance |x| to the left.

The undamped oscillator model is

(2)

$$mx''(t)+kx(t)=RM\omega^2\,\cos\omega t.$$

Model Derivation

Friction ignored, Newton's second law gives force $F = m\overline{x}''(t)$, where \overline{x} locates the cart's center of mass. Hooke's law gives force F = -kx(t). The centroid \overline{x} can be expanded in terms of x(t) by using calculus moment of inertia formulas. Let $m_1 = m - M$ be the cart mass, $m_2 = M$ the drum mass, $x_1 = x(t)$ the moment arm for m_1 and $x_2 = x(t) + R \cos \theta$ the moment arm for m_2 . Then $\theta = \omega t$ in Figure 3 gives

(3)
$$\overline{x}(t) = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2}$$
$$= \frac{(m - M)x(t) + M(x(t) + R\cos\theta)}{m}$$
$$= x(t) + \frac{RM}{m}\cos\omega t.$$

Force competition $m\overline{x}'' = -kx$ and derivative expansion results in the forced harmonic oscillator

$$mx''(t)+kx(t)=RM\omega^2\,\cos\omega t.$$